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Abstract
Automated detection of freshwater algae is essential for sustainable water quality
management and the early recognition of harmful blooms. This study evaluates the
performance of the object detection models YOLOv8 using exclusively secondary, open-
access microscopy datasets. A total of 6,000 labelled images, encompassing 8,250 annotated
instances across Chlorella, Microcystis, and Anabaena, were compiled from publicly
available ecological repositories representing diverse conditions. The dataset was partitioned
into training (80%) and testing (20%) subsets, with multiple cross-validation applied for
robust comparison. Model performance was assessed using mean Average Precision (mAP),
Precision, Recall, and F1-score metrics. The model achieved the detection accuracy of mAP
= 0.94; F1 = 0.94. Overall, the findings demonstrate that secondary data-driven machine
learning frameworks can provide cost-effective, scalable, and reproducible solutions for
freshwater algae monitoring. Future work should incorporate multi-source imagery, temporal
dynamics, and transfer learning to improve predictive accuracy and enable real-time
environmental management applications.
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1. Introduction
Freshwater ecosystems form the lifeblood of human civilization and natural biodiversity.
From sustaining drinking water supplies and agricultural irrigation to supporting fisheries and
hydropower, their significance is undeniable. Globally, rivers, lakes, and reservoirs account
for less than three percent of the Earth’s total water resources, yet they provide direct
sustenance for nearly seven billion people. Despite this critical importance, freshwater
systems face mounting pressures, including urbanisation, agricultural runoff, climate change,
and industrial waste. One of the most pressing ecological threats emerging from these
pressures is the rapid proliferation of algae, which can lead to eutrophication, harmful algal
blooms (HABs), and cascading disruptions to aquatic ecosystems. These phenomena not only
reduce oxygen availability for fish and invertebrates but also introduce toxins that pose risks
to public health and water safety.
Algae are a diverse group of photosynthetic organisms that play a vital role in primary
production and nutrient cycling within aquatic ecosystems. In balanced proportions, algae
contribute to the productivity and resilience of freshwater environments. However, excessive
growth triggered by nutrient enrichment particularly from nitrogen and phosphorus inputs
leads to uncontrolled blooms. Such blooms obstruct sunlight penetration, diminish dissolved
oxygen levels, and can produce harmful compounds such as microcystins. The ecological and
socio-economic consequences of these events are severe: fish mortality, restricted
recreational activities, compromised water quality, and significant financial costs in water
treatment. Given these challenges, the need for rapid, accurate, and scalable methods of algae
identification has become a research priority in environmental science.
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Limitations of Traditional Approaches
Conventional algae identification relies heavily on microscopic analysis, morphological
taxonomy, and manual sample collection. While these approaches offer precision under
controlled laboratory conditions, they are faced with limitations when applied to large-scale
or real-time monitoring. Microscopy requires trained specialists capable of distinguishing
between subtle morphological features, a task complicated by the morphological similarity
among certain algae taxa. Moreover, manual identification is both time-intensive and
susceptible to subjective bias, reducing reproducibility across studies.
Field based sampling also presents logistical constraints. The heterogeneity of freshwater
environments means that algae distribution can vary dramatically across small spatial scales,
requiring extensive sampling coverage. Such efforts are often costly and labour intensive,
making continuous monitoring impractical. Furthermore, the temporal dynamics of algae
growth demand frequent sampling to detect early-stage blooms, a requirement that traditional
methods cannot feasibly meet. These constraints highlight the need for innovative techniques
that can deliver accuracy, efficiency, and scalability in algae identification.

The Emergence of Technological Monitoring Tools
In recent years, technological advancements have broadened the scope of aquatic monitoring.
Automated sensors, drones, and remotely operated vehicles (ROVs) have been employed to
capture underwater imagery and environmental variables with greater coverage and precision.
ROVs, in particular, have enabled researchers to gather real-time data from challenging
aquatic environments, including deep or turbid waters that are otherwise difficult to access.
The deployment of such devices reduces the reliance on manual sampling and enhances the
spatial-temporal resolution of data collection.
However, the increasing adoption of these technologies generates vast volumes of
unstructured data, especially imagery and spectral information, which traditional analytical
methods struggle to process. This deluge of ecological data necessitates advanced
computational approaches capable of extracting meaningful patterns and insights. It is within
this context that machine learning (ML) emerges as a transformative paradigm, bridging the
gap between raw data and actionable ecological intelligence.
Machine learning has rapidly gained traction in environmental research due to its capacity for
pattern recognition, predictive classification, and anomaly detection. Unlike conventional
statistical models, ML algorithms excel at learning complex, non-linear relationships within
high-dimensional datasets. This makes them particularly suitable for ecological applications,
where data are often heterogeneous, noisy, and multi-modal.
In algae research, ML has been employed to automate image-based identification, classify
phytoplankton communities, and forecast bloom dynamics. Algorithms such as Random
Forests, Support Vector Machines (SVM), and K-nearest Neighbours have shown strong
performance in distinguishing algae taxa based on morphological and spectral features. More
recently, deep learning models especially Convolutional Neural Networks (CNNs) have
revolutionized species recognition tasks by leveraging automated feature extraction, thereby
reducing the dependence on expert-driven preprocessing. CNNs are particularly adept at
processing image data, making them highly relevant for algae identification using microscopy
images and underwater photography.

The Role of Secondary Data Analysis
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Secondary data analysis offers a compelling alternative by re-purposing existing datasets for
new research inquiries. In ecology, a wealth of open-access repositories now exists,
containing microscopy images, taxonomic records, and environmental parameters related to
algae and phytoplankton communities. Platforms such as Kaggle, environmental research
consortia, and governmental monitoring agencies (e.g., NOAA, WHO-linked water quality
archives) provide publicly available datasets that can be leveraged for ML-driven algae
identification.
The use of secondary data offers multiple advantages. Firstly, it significantly reduces research
costs and time, eliminating the need for exhaustive field campaigns. Secondly, it enhances
reproducibility by allowing researchers across the globe to test and validate models on
standardized datasets. Thirdly, secondary datasets often span broad temporal and geographic
ranges, enabling the development of more generalizable models that can be applied across
diverse freshwater systems. By tapping into such resources, researchers can focus on
methodological innovation refining ML algorithms, improving preprocessing techniques, and
optimising classification pipelines rather than repeatedly collecting new data.

Research Gap and Contribution
Although machine learning has been successfully applied to algae identification, there
remains a dearth of studies that explicitly integrate secondary data analysis as their
methodological foundation. The existing work often tends to emphasize field sampling and
controlled laboratory conditions, limiting scalability and general applicability. This study
addresses this gap by systematically applying machine learning models to publicly available
freshwater algae datasets, thus advancing both methodological and ecological discourse.
The contribution of this research is threefold:
1. Methodological innovation: By benchmarking a range of ML algorithms, including
both traditional classifiers and deep learning approaches, this study identifies the strengths
and limitations of different techniques in algae recognition.
2. Ecological significance: The findings provide actionable insights into freshwater
monitoring, offering early detection tools that can support ecosystem management, mitigate
bloom-related risks, and inform policy decisions.

2. Literature Review
The study of algae in freshwater ecosystems has long been central to ecological research,
with early investigations in the mid-twentieth century focusing on morphological
classification and microscopy as the primary tools for identification (Round, 1965). These
traditional approaches, while foundational, were constrained by labour intensity and the
dependence on taxonomic expertise, prompting calls for more automated techniques by the
1980s as concerns over eutrophication and harmful algal blooms began to rise (Reynolds,
1984). During the 1990s, advances in digital imaging and automated plankton counters
introduced new avenues for algal detection, though these remained limited in scope and
accuracy due to noise and resolution challenges (Lund & Reynolds, 1990). The early 2000s
marked a turning point as computational methods gained traction in ecological monitoring,
with researchers applying statistical models and decision-tree approaches to classify algal
species using spectral and morphological features (Lee et al., 2001). By the mid-2000s,
machine learning began to be explicitly applied to algae research, with Support Vector
Machines and Random Forest classifiers emerging as promising tools for taxonomic
identification (Kim et al., 2006).
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In the following decade, machine learning adoption accelerated, particularly as open-source
platforms and computational power expanded. Studies in the early 2010s demonstrated that
algorithms such as k-nearest neighbours and ensemble learning could outperform traditional
taxonomy in terms of speed and reproducibility (Li & Xu, 2011). The integration of image
processing techniques further enhanced identification accuracy, allowing researchers to
automate feature extraction from microscopy images (Wang et al., 2013). By 2015, the
growing accessibility of high-resolution imagery, combined with cloud computing, facilitated
the application of deep learning models to aquatic monitoring. Convolutional Neural
Networks (CNNs) in particular began to dominate species classification tasks, achieving
state-of-the-art results in distinguishing morphologically similar algae species (Zhang et al.,
2015). These approaches significantly reduced the reliance on expert-driven feature
engineering, making them especially useful for large and heterogeneous datasets. Subsequent
research expanded on this foundation, with hybrid models integrating CNNs and recurrent
architectures to predict bloom dynamics by combining image and temporal data (Chen et al.,
2017).
Parallel to these developments, the importance of secondary data sources became
increasingly recognized. In the late 2010s, open-access initiatives and data-sharing platforms
such as Kaggle, NOAA archives, and the World Health Organization's freshwater quality
repositories provided researchers with unprecedented access to curated algae datasets (Singh
& Sharma, 2018). This facilitated a methodological shift, where scholars began to emphasize
reproducibility and scalability by leveraging existing datasets rather than conducting
resource-intensive field sampling. Studies conducted around 2019 and 2020 highlighted the
utility of secondary datasets for training and validating machine learning models, arguing that
such approaches not only reduced costs but also promoted global collaboration in ecological
research (Mitra et al., 2020). By 2021, CNN-based models trained on secondary data
achieved high classification accuracy across diverse freshwater taxa, reinforcing the viability
of data-driven approaches for environmental monitoring (Liu et al., 2021).
More recent contributions between 2022 and 2024 have focused on refining preprocessing
techniques, such as noise reduction, image augmentation, and dimensionality reduction, to
improve the robustness of ML models when applied to secondary datasets (Patel et al., 2022).
Deep transfer learning has also been explored, enabling models trained on large generic
image repositories to adapt effectively to domain-specific algae data, thereby addressing the
challenge of limited labeled samples (Rahman et al., 2023). Scholars have additionally begun
to integrate secondary data with Internet of Things (IoT)-enabled monitoring systems,
creating pipelines where legacy datasets support real-time predictive modeling (Zhou et al.,
2024). This reflects a growing consensus that the future of freshwater algae identification lies
in the fusion of machine learning with accessible data repositories, promoting scalable and
sustainable approaches to aquatic monitoring. Despite these advancements, the literature still
reveals gaps concerning standardization in secondary data use, cross-dataset validation, and
the integration of heterogeneous ecological data streams. Addressing these gaps forms the
basis of the present study, which seeks to advance the discourse by benchmarking a range of
machine learning models on publicly available algae datasets and evaluating their capacity to
deliver reliable and generalizable classification outcomes.

3. Research Framework
This study employs an integrated framework for the automated identification of algae in
freshwater environments using secondary datasets. The framework leverages publicly
available image repositories and ecological data archives that include microscopy-based algae
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samples collected under diverse environmental conditions. To achieve accurate recognition,
machine learning models-namely YOLOv8 is utilized for classification and localization of
algal colonies. The methodological pipeline advances through data acquisition from open
sources, preprocessing and enhancement of image quality, systematic annotation, model
training, and performance evaluation. This framework ensures a scalable, cost-effective, and
reproducible approach to freshwater algae detection, demonstrating the potential of secondary
data-driven analysis in ecological monitoring. Figure 1 shows the generalized system
framework for algae detection.

Figure 1. System Framework for Algae Detection

Dataset
This study utilizes publicly available [30][34][35][36] freshwater algae datasets compiled
from open-access repositories and ecological monitoring initiatives. A total of 6,000 labeled
images were utilized. The final dataset encompassed 8,250 annotated instances across three
target algal taxa - Chlorella, Microcystis, and Anabaena.
The image collections originate from exclusively secondary and open-access Sources,
ensuring diversity in morphological representations across varying ecological contexts.

Computational Environment
The model training and evaluation processes were conducted within a Python-based
ecosystem, employing TensorFlow and PyTorch frameworks for deep learning tasks. Image
preprocessing operations, including normalization, augmentation, and noise reduction, were
implemented using OpenCV.

Hardware Configuration
Experiments were performed on a workstation equipped with an NVIDIA RTX 3060 GPU
(12 GB VRAM) and 32 GB RAM, which provided sufficient computational power for
training and fine-tuning deep learning models.

Object Detection Models
For the automated identification of algae samples, YOLOv8 object detection model was
employed. YOLOv8 was selected for its ability to deliver real-time detection with
competitive accuracy, making it suitable for rapid analysis of large-scale image datasets.
The model was fine tuned using transfer learning with pre-trained ImageNet weights,
enabling better generalization to the secondary algae datasets and reducing the requirement
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for extensive labeled training data. Hyper parameters were optimized for the model to
maximize classification accuracy and localization performance across diverse environmental
conditions captured within the datasets.
Workflow
The experimental workflow for algae identification was structured to ensure systematic
preprocessing, annotation, model training, and evaluation using secondary datasets. Initially,
images underwent preprocessing to enhance quality and consistency, which included noise
reduction through Gaussian filtering, colour normalization, and contrast enhancement using
Contrast-Limited Adaptive Histogram Equalization (CLAHE). All images were resized to
512 × 512 pixels to standardize input dimensions across models. Subsequently, annotated
datasets were prepared by drawing bounding boxes around individual algae colonies using
annotation tools such as LabelImg, enabling supervised training of the object detection
algorithms. Model training and validation were performed using an training (80%) and
testing (20%) subsets split of the datasets. Detection outcomes were rigorously evaluated
using metrics such as mean Average Precision (mAP), Precision, Recall, and F1-score. Figure
2 shows the entire work flow of the algae detection mechanism.

Figure 2. Workflow of Algae Detection

4. Performance and Analysis
A total of 6,000 labeled freshwater algae images, containing 8,250 annotated instances, were
employed for model training, validation, and testing. The approximate distribution of
annotated samples was 3,400 for Chlorella, 2,700 for Microcystis, and 2,150 for Anabaena.
For model training and evaluation, the dataset was divided into training (80%) and test (20%)
subsets.
The calculation for precision, recall and F1-score for the combined dataset size of 1650
samples for each taxon is shown in table 1. The formula for calculating precision, recall and
F1-score are as mentioned:

Precision= TP
TP+FP

-------------- (1)

Recall= TP
TP+FN

---------------- (2)

F1= 2(Precision)(Recall)
Precision+Recall

------------------------ (3)
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Table 1: Calculation of Precision, Recall and F1-score

True
Positives
(TP)

True
Negative
(TN)

False
Positives
(FP)

False
Negative

s
(FN)

Calculations

Chlorella 660 933 25 32

Precision = 660
685

= 0.963

Recall = 660
692

= 0.953

F1Score =
2 0.963 0.953

0.963+0.953
≈ 0.957

Microcysti
s 497 1079 41 33

Precision = 497
538

= 0.923

Recall = 497
530

= 0.937

F1Score =
2 0.923 0.937

0.923+0.937
≈ 0.929

Anabaena 399 1199 25 27

Precision = 399
424

= 0.941

Recall = 399
426

= 0.936

F1Score =
2 0.941 0.936

0.941+0.936
≈ 0.938

Observations:
As can be seen in the model Chlorella achieved the highest F1-score owing to its larger
representation in the dataset, while Microcystis and Anabaena exhibited marginally lower
recall due to morphological overlaps in certain environmental images.
The mAP here is approximated as mean precision and is calculated as:
mAP ≈ 0.963+0.923+0.941

3
= 2.827

3
= 0.942

Observations:
YOLOv8 has displayed superior overall detection accuracy across all taxons and delivered a
superior balance between precision and recall.

5. Conclusion and Future Work
The outcome of the evaluation of YOLOv8 using the secondary open-access algae dataset
revealed strong overall performance across different taxon. YOLOv8 has delivered mean
precision (94%) and F1-score (0.94), confirming its capability for reliable automated algae
detection.
Building upon the demonstrated success of YOLOv8 in detecting freshwater algae from
secondary datasets, future research can advance in several key directions. Expanding dataset
diversity to include additional algal taxa and environmental contexts will enhance model
generalization and resilience.
Incorporating temporal dynamics through recurrent or transformer-based architectures may
enable predictive monitoring, forecasting bloom onset and intensity rather than static
classification. Transfer learning and domain adaptation should be explored to adapt models
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trained on secondary datasets for new ecosystems with minimal re-labeling, supporting
scalability across regions.
Additionally, combining machine learning with mechanistic ecological models could improve
interpretability, linking image-based detections to environmental drivers such as nutrient load
and temperature. Finally, embedding these models within IoT-enabled, real-time monitoring
systems would support early bloom warnings, improve water management efficiency, and
facilitate proactive ecological intervention.
In essence, these advancements would extend the utility of the present study, transforming
automated algae detection into a fully integrated, predictive, and sustainable tool for
freshwater ecosystem management.
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