Artificial Intelligence and Employee Well-Being: Examining Digital and Subjective Outcomes in the Indian Banking Sector

Archana Dubey¹, Dr. Kailash Kumar Sahu², Dr. Tushar Ranjan Sahoo³

¹Research Scholar Amity Business School Amity University Chhattisgarh E-mail: archanal6dubey@gmail.com ²Assistant Professor Amity Business School Amity University, Chhattisgarh E-mail: kksahu@rpr.amity.edu ³Assistant Professor Amity Business School Amity University, Chhattisgarh E-mail: trsahoo@rpr.amity.edu

Abstract

The integration of artificial intelligence (AI) into organizational processes has reshaped work dynamics, necessitating an understanding of its impact on employee well-being. While prior research has largely focused on productivity and efficiency, less attention has been devoted to the influence of AI on digital and subjective well-being, particularly in the banking sector. The purpose of this study is to examine how employees' perceptions of AI deployment affect their well-being in the Indian banking industry. A quantitative, cross-sectional survey design was adopted, and data were collected from 214 banking professionals across public, private, and international banks using a purposive sampling technique. A structured questionnaire was developed from established scales, refined through expert review and a pilot test, and administered to digitally active employees. Structural equation modeling with SmartPLS was employed to validate the measurement and structural models, while reliability and descriptive analyses were conducted in SPSS. The findings indicate that favorable perceptions of AI significantly enhance both digital and subjective well-being. The effect was stronger for digital well-being, where positive perceptions reduced digital fatigue and improved balance, while a moderate positive impact was observed on subjective well-being, contributing to satisfaction and emotional stability. The study advances theory by integrating JD-R, technostress, and COR perspectives, while offering practical insights for managers and policymakers to ensure humancentered AI adoption.

Keywords: Artificial Intelligence, Subjective Well-Being, Digital Well-Being, Indian Banking Sector, Employee Perceptions

1. Introduction

In recent years, the infiltration of Artificial Intelligence (AI) into the workplace has transitioned from speculative discourse to lived reality. Across sectors, organizations are experimenting with AI-driven tools, from intelligent automation, chatbots, predictive analytics to digital assistants, all with the promise of enhancing efficiency, reducing manual load, and enabling more strategic work. Yet, amid this technological optimism lies a complex and underexplored terrain: how AI influences employee subjective well-being and digital well-being. While much attention has focused on productivity gains and cost savings, far fewer studies critically examine how AI transforms employees' lived experience, especially in high-stakes, high-stress environments such as banking.

This study probes that gap by investigating the impact of AI on subjective and digital well-being among banking employees. In the context of banking, where roles are often tightly

regulated, performance metrics are stringent, and digital systems are already pervasive, the integration of AI can exacerbate both opportunities and tensions. On one hand, AI may offload repetitive tasks, streamline workflows, and free up cognitive bandwidth, thus fostering greater job satisfaction, reduced fatigue, and a more humane work rhythm. For instance, AI-based scheduling, real-time decision support, or automating back-office operations can help employees focus on relational or strategic dimensions of their role (e.g., customer relationships, advisory tasks). Such augmentation could enhance employees' sense of competence, autonomy, and meaningfulness—core drivers of subjective well-being. On the other hand, AI's presence may intensify pressure toward constant digital engagement, blur boundaries between work and personal life, and trigger techno-stress. The notion of digital well-being, the quality of one's relationship with technology, including factors such as digital overload, attention fragmentation, digital fatigue, and boundaries in technology use, becomes critical in this setting. AI tools, by design, often push for continuous feedback loops, instant responsiveness, continual monitoring, and algorithmic oversight. Employees may feel compelled to remain digitally present, respond to AI-generated alerts, or validate AI suggestions, thereby increasing digital burden and eroding rest and recovery time.

Empirical studies have started to surface the ambivalent nature of AI's impact on well-being. A recent article in Nature Scientific Reports notes that while AI automation may reduce physical strain, it can simultaneously elevate emotional and cognitive load in knowledge-intensive jobs, affecting job satisfaction and stress levels (Giuntella et al., 2025). Similarly, Valtonen et al. (2025) find that AI adoption does not directly affect employee well-being; rather, its influence operates indirectly via mediators like task optimization and safety perceptions. Chuang et al. (2025) further document AI's "dual impact" on both work and life domains, with generative AI tools increasing productivity but also creating spillovers into personal well-being. On the more critical side, research on "work affective well-being" warns of negative emotional consequences when employees perceive AI as a substitution threat (the so-called STARA ["Smart, Talent, Automation, Robotics, Artificial Intelligence"] awareness) (Giuntella et al., 2025). Meanwhile, Soulami et al. (2024) highlight that AI tools designed for emotion recognition may initially provoke stress before they contribute to well-being, and that algorithmic management can undermine autonomy.

Industry commentators echo these ambivalences. According to Forbes, 77 % of employees using AI report that it adds to their workload rather than simplifies it (Robinson, 2024). Another Forbes piece emphasizes that AI can analyze engagement survey data or digital communication patterns to flag burnout risks, but warns of surveillance and privacy trade-offs (Hamilton, 2025). Meanwhile, voices in the future-of-work discourse urge caution: if mismanaged, AI may exacerbate the "infinite workday" by collapsing temporal boundaries in digital work (Brue, 2025). In banking specifically, the stakes are high. The sector is highly regulated, emphasizes precision, security, and compliance, and typically maintains rigid performance indicators. The introduction of AI in credit scoring, fraud detection, customer chatbots, process automation, or compliance monitoring compels employees to adapt to new human—machine routines. The pressure to keep pace, validate AI outcomes, or remain digitally responsive may amplify job stress. At the same time, the potential for AI to relieve tedious tasks (e.g. data entry, reconciliation) offers a valuable opportunity to free cognitive space for more strategic, relational, or advisory tasks.

Given this tension, the central research questions guiding this study are: (1) How does AI adoption affect the subjective well-being (e.g. job satisfaction, emotional states, work

meaningfulness) of banking employees? (2) How does it influence their digital well-being (e.g. digital overload, boundary management, techno-stress)? By focusing the lens on banking employees, this study contributes to both theory and practice. Theoretically, it extends the literature on AI and worker well-being into a domain with high digital intensity and performance pressure. Practically, results may inform how banks—and more broadly, institutions with critical infrastructure—deploy AI in a human-centric way, safeguarding well-being while realizing efficiency gains. In doing so, this research aims to contribute toward designing AI-augmented workplaces where technology uplifts, rather than undermines, the flourishing of employees.

2. Literature Review

2.1 Theoretical framework

For the present study, we adopt a Job Demands-Resources (JD-R) framework integrated with technostress theory and Conservation of Resources (COR) insights as our guiding theoretical lens. Within this hybrid model, AI interventions in banking are conceptualized as both job demands (e.g. validating AI outputs, continuous digital monitoring, algorithmic oversight) and job resources (e.g. automation of repetitive work, decision support, time savings). The technostress perspective helps us identify the specific stressors generated by AI, such as technooverload, techno-invasion, and techno-uncertainty, which may mediate negative effects on digital well-being Pansini et al., 2023). COR theory complements this view by suggesting that employees experience strain when they perceive their resources (e.g. cognitive bandwidth, emotional energy, sense of control) as threatened or depleted by AI's demands (Purisiol, 2020). Prior empirical work also indicates that integrating AI into the workplace can shift the balance of demands and resources, influencing well-being outcomes (Valtonen et al., 2025), or triggering dual positive and negative effects on work and life domains via AI-driven demands and resources (Chuang et al., 2025). Altogether, this integrated framework allows us to hypothesize how and when AI can either bolster or erode subjective well-being and digital well-being in banking employees, while enabling us to test moderating roles (e.g. digital literacy, organizational support, perceived autonomy) that might buffer against negative consequences.

2.2 Perception of AI Deployment and Digital Wellbeing

The perception of AI deployment significantly influences digital well-being, as evidenced by various studies examining its impact across different contexts. AI integration in workplaces, particularly in HR functions, can enhance efficiency and reduce bias but also raises concerns about job security, fairness, and privacy, which can affect employee well-being negatively if not managed with transparency and ethical practices (Sadeghi, 2024). The perception of AI as a supportive tool can foster positive outcomes, such as improved mental health and job satisfaction, when organizations prioritize clear communication and employee involvement in AI implementation (Sadeghi, 2024). In the realm of digital well-being, the Human-Centered AI for Digital Well-Being (HCAI-DW) model emphasizes designing AI systems that positively influence users' perceptions and behaviors, thereby enhancing digital well-being (Shin, 2024). However, the perception of AI in HR can lead to feelings of reduced organizational support, adversely affecting psychological well-being and increasing turnover intentions if employees perceive AI as a threat rather than a tool for support (Oglesby et al., 2024). AI-enabled mental wellness platforms, like 'mindline at work,' show that user perceptions of AI features, such as chatbots, can enhance mental well-being by providing a non-judgmental space for selfreflection, although institutional support is crucial for broader adoption (Yoon et al., 2024). Moreover, AI's role in mental health through tools like chatbots and therapy apps can empower

individuals by offering accessible mental health resources, yet it also poses risks of addiction and privacy concerns (Shankar et al., 2023) (Marriott & Pitardi, 2023). In educational settings, AI's impact on student well-being is mixed, offering personalized learning and mental health support while also contributing to digital fatigue and social isolation if over-relied upon (Klimova & Pikhart, n.d.). The perception of AI among digital natives can lead to anxiety and stress due to constant connectivity, but fostering critical thinking and mindfulness can mitigate these effects (Fei, 2024). Lastly, in healthcare, AI awareness among workers can enhance informal learning and workplace well-being, suggesting that positive perceptions of AI can facilitate adaptation to technological changes (Arboh et al., n.d.). Thus, the study hypothesizes:

H1: Perceived AI deployment has significant effect on subjective wellbeing.

2.3 Perception of AI Deployment and Subjective Wellbeing

The perception of AI deployment significantly influences subjective well-being, as evidenced by various studies examining its impact across different contexts. Employees' perceptions of AI in the workplace, particularly within human resources, can lead to feelings of reduced organizational support, negatively affecting psychological well-being and increasing turnover intentions (Oglesby et al., 2024). While AI can enhance efficiency and reduce bias, it also raises concerns about job security, fairness, and privacy, which can undermine employee well-being if not managed with transparency and ethical practices (Sadeghi, 2024). Negative perceptions of AI are consistently associated with lower life satisfaction, suggesting a broader societal fear of new technologies that can impact overall well-being (Hinks, 2024). The awareness of AI's potential to replace jobs, known as STARA awareness, can lead to negative work emotions and stress, further affecting employees' affective well-being (Jin et al., 2024). Conversely, perceiving AI as an opportunity can enhance workplace well-being, especially when employees engage in informal learning and perceive lower unemployment risks (Xu et al., 2023). The integration of AI into mental health services offers potential benefits, such as improved access to resources and enhanced diagnostic accuracy, which can positively impact mental well-being (Shankar et al., 2023). However, the ethical and sociological implications, such as privacy concerns and job displacement, remain significant challenges (Shankar et al., 2023). The IMPACT framework suggests that understanding AI's influence on well-being requires considering various factors, including modality, personal attributes, cultural context, and transparency (Montag et al., 2024). Finally, leveraging AI for community well-being involves understanding well-being as a dynamic concept that encompasses subjective, social, and psychological dimensions, necessitating a strategic approach to AI deployment (Narayan, 2020). Thus, the study hypothesizes: -

H2: Perceived AI deployment has significant effect on subjective wellbeing.

3. Research Methodology

3.1 Research Design and Sampling

This study adopted a quantitative, cross-sectional survey design to investigate the relationship between artificial intelligence (AI) adoption and employees' subjective and digital well-being in the Indian banking sector. The research focused on employees from public, private, and international banks, ensuring diversity and representativeness in the sample. A purposive sampling approach was employed, targeting banking professionals who were digitally active and spent a substantial portion of their working hours using AI-enabled tools and applications. A total of 214 valid responses were collected and used for analysis. This approach was considered suitable because it ensured that only participants with firsthand experience of AI-enabled systems contributed data, thereby improving the relevance and richness of the findings.

ISSN: 1526-4726 Vol 5 Issue 3 (2025)

3.2 Research Instrument and Scale Development

A structured questionnaire was designed as the research instrument, using a five-point Likert scale ranging from "strongly disagree" to "strongly agree." The development of the scale was informed by established theories and prior studies on artificial intelligence, technostress, and employee well-being. The constructs captured three core dimensions: perception of AI deployment, subjective well-being, and digital well-being. The scale development process involved multiple stages. In the first stage, measurement items were identified from existing validated scales and modified for contextual suitability in the Indian banking industry. In the second stage, the instrument underwent expert review to ensure content relevance and clarity. A pilot study with 40 participants was then conducted to test the reliability, validity, and comprehension of the questionnaire. Based on the feedback, minor adjustments were made before finalizing the instrument for large-scale data collection (see Table 1). This rigorous process enhanced the robustness and accuracy of the research tool.

Table 1: Constructions and Measurement Items

Perception of AI Deployment 1.Artificial Intelligence (AI) has been significantly deployed across various departments in my bank. 2.The AI technologies implemented in my workplace are easy to	Self-Constructed Tool
understand. 3. The AI technologies implemented in my workplace are easy to use.	1001
4. The adoption of AI has simplified routine and repetitive tasks in my job.	
Subjective Well-Being	
5. The introduction of AI applications has improved my overall job satisfaction.	Pradhan, R. K., &
6. AI applications have made me feel more engaged in my job.	Hati, L. (2019)
7. AI applications have made my job more meaningful.	
8. AI at work has improved my emotional well-being.	
Digital Well-Being	
9. I experience a lot of benefits from using AI applications at work.	
10. I experience a lot of drawbacks from using AI applications at work.	Self-Constructed
11. Using AI tools at work helped me maintain work-life balance in life.	Tool
12. My organization supports employees in maintaining digital well-being while using AI technologies.	

3.3 Data Collection Procedure

The study used primary data collection methods to gather responses from banking professionals across India. The structured questionnaire was disseminated both online and offline to ensure maximum participation and accessibility. Respondents were informed of the academic purpose of the study, and strict confidentiality protocols were maintained throughout the process. The diverse representation from public, private, and international banks allowed the study to capture perspectives across organizational hierarchies and contexts.

ISSN: 1526-4726 Vol 5 Issue 3 (2025)

4. Analysis and Results

4.1 Data Analysis Tools and Techniques

To analyze the collected data, both SPSS version 26 and SmartPLS 4 were employed. SPSS was primarily used for descriptive statistics, demographic profiling, and reliability analysis through Cronbach's Alpha. SmartPLS was used for structural equation modeling (SEM) and validation of the measurement model. The latter included tests for indicator reliability, internal consistency reliability, convergent validity, and discriminant validity. Employing this dual-software approach ensured both descriptive insights and advanced model validation, in line with established methodological standards (Hair et al., 2019).

4.2 Reliability and Validity of Measures

The measurement model was rigorously assessed for reliability and validity (see Table 2). For Perception of AI Deployment, factor loadings ranged between 0.880 and 0.958, demonstrating strong indicator reliability. Internal consistency was excellent, with Cronbach's Alpha of 0.940, Composite Reliability (CR) of 0.957, and Rho_A of 0.941. The Average Variance Extracted (AVE) was 0.848, surpassing the recommended 0.50 threshold for convergent validity. For Subjective Well-Being (SWB), factor loadings ranged between 0.830 and 0.882. Internal consistency was high, with Cronbach's Alpha of 0.882, CR of 0.915, and Rho_A of 0.956. The AVE of 0.729 confirmed convergent validity. For Digital Well-Being (DWB), loadings ranged between 0.796 and 0.895. Cronbach's Alpha was 0.747, CR was 0.855, and Rho_A was 0.752, all above the minimum threshold. The AVE was 0.663, indicating adequate convergent validity. Thus, all constructs achieved strong item loadings, internal consistency reliability, and convergent validity, meeting the criteria suggested in prior methodological literature (Hair et al., 2019).

Average Composite Composite Item Cronbach's Variance Items Constructs reliability reliability Code Loading Alpha Extracted (Rho A) (CR) (AVE) PRP1 0.888 PRP2 0.958 Perception 0.940 0.941 0.957 0.848 PRP3 0.955 PRP4 0.880SWB1 0.868 Subjective Well-SWB2 0.882 0.882 0.956 0.915 0.729 **Being** SWB3 0.830 SWB4 0.834 DWB1 0.819 Digital Well-DWB3 0.827 0.747 0.752 0.855 0.663 **Being** DWB4 0.796

Table 2: Reliability Measures

4.3 Discriminant Validity

Discriminant validity was assessed using both the Fornell-Larcker criterion and the Heterotrait-Monotrait (HTMT) ratio of correlations (Henseler, Ringle, & Sarstedt, 2015). The

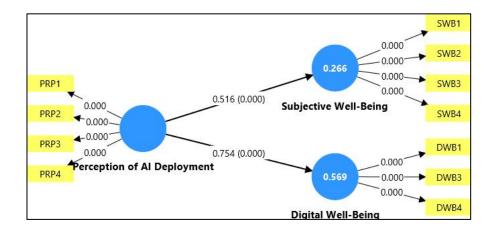
Fornell–Larcker analysis demonstrated that the square roots of AVE values for digital well-being (0.814), perception of AI (0.921), and subjective well-being (0.854) were higher than the inter-construct correlations, indicating that each construct was distinct from the others (see Table 3). Similarly, the HTMT ratios were below the conservative threshold of 0.85, confirming discriminant validity. These results established that the constructs measured in the study were empirically distinct, thereby validating the scale's ability to differentiate between subjective well-being and digital well-being in the context of AI adoption among banking employees.

Table 3: Discriminant validity (Fornell-Larcker criterion)

	Digital Well-	Perception of	Subjective
	Being	AI Deployment	Well-Being
Digital Well-Being	0.814		
Perception of AI Deployment	0.754	0.921	
Subjective Well-Being	0.628	0.515	0.854

Table 4: Heterotrait-Monotrait ratio (HTMT) - Matrix

	Digital Well- Being	Perception of AI Deployment	Subjective Well-Being
Digital Well-Being			
Perception of AI Deployment	0.813		
Subjective Well-Being	0.733	0.517	


4.4 Hypotheses testing

The results of the structural model analysis indicate that employees' perception of AI deployment has a significant positive impact on both digital well-being and subjective well-being. Specifically, perception of AI deployment strongly predicted digital well-being (β = 0.713, t = 16.856, p < 0.001), explaining 56.9% of the variance (R² = 0.569). This suggests that favorable attitudes toward AI tools enhance employees' ability to manage digital technologies effectively, thereby reducing digital fatigue and promoting digital balance. Similarly, perception of AI deployment demonstrated a moderate positive effect on subjective well-being (β = 0.516, t = 8.200, p < 0.001), accounting for 26.6% of its variance (R² = 0.266). This finding implies that positive perceptions of AI contribute to employees' happiness, life satisfaction, and emotional stability in the workplace. Both hypotheses were thus supported. The detailed results are presented in Table 5.

Table 5: Data Analysis

	Direct effect (R Square)	Path coefficient (β)	t value	p Value
Perception of AI Deployment → Digital Well-Being	0.569	0.713	16.856	0.000
Perception of AI Deployment → Subjective Well-Being	0.266	0.516	8.200	0.000

ISSN: 1526-4726 Vol 5 Issue 3 (2025)

5. Discussion

In the present study, the objective was to examine how banking employees' perception of AI deployment relates to their digital well-being and subjective well-being. Anchored in our hybrid framework (JD-R + technostress + COR), we posited two primary hypotheses: that perception of AI would positively influence digital well-being (H1) and that it would positively influence subjective well-being (H2). The results support both hypotheses, providing fresh empirical evidence from the banking domain in India. Below, we discuss the implications of each hypothesis in turn, situating the findings within existing scholarship and highlighting theoretical and practical insights.

The present study confirms H1 that more favorable perceptions of AI deployment are significantly associated with higher digital well-being. In other words, employees who see AI tools as trustworthy, beneficial, and supportive tend to manage their digital interactions and demands more effectively, experiencing less digital fatigue, better balance, and a more controlled relationship with technology. This result aligns with the tenets of technostress theory, where the appraisal of technology (as opportunity versus threat) plays a decisive role in whether strain surfaces (Tarafdar et al., 2015). When AI is appraised positively, it likely shifts toward being experienced as a resource, thereby attenuating stress from digital overload. It also resonates with recent findings on digital well-being: for instance, Mayiwar et al. (2025) demonstrate that subjective digital literacy and self-control positively predict digital well-being, suggesting individual attitudes and regulation capacities matter deeply in how technology is experienced.

Importantly, this finding suggests that attitudinal factors may be as critical, if not more so, than the mere existence of AI tools. Two employees exposed to the same AI platform may differ in digital wellness outcomes based on their internal perception and acceptance. This dynamic underscores the value of interventions aimed at shaping positive perceptions (through communication, training, user involvement) for safeguarding digital well-being. At the same time, one must be cautious about the directionality: employees with inherently higher digital well-being may also develop more favorable perceptions of AI. Longitudinal or experimental designs would be useful to untangle this relationship more strictly.

H2 is also supported that perception of AI deployment is positively associated with subjective well-being, reflecting employees' positive affect, satisfaction, and emotional stability. The effect is more moderate compared to digital well-being, consistent with the idea that subjective well-being is influenced by many factors beyond technology. This pattern suggests that positive

AI perception may create conditions conducive for psychological flourishing—but it may do so indirectly or more gradually. For example, favorable perception may reduce digital strain (proximal effect) and free up psychological bandwidth, which then enhances subjective well-being over time. This is consistent with research by Valtonen et al. (2025), who find that AI adoption affects employee well-being *indirectly*, via mediators such as task optimization and perceived safety at work, rather than via direct paths.

Moreover, Giuntella et al. (2025) in a longitudinal context find little evidence of outright negative effects of AI adoption on workers' mental health, and even some improvements in health satisfaction, suggesting that adaptation and perception matter greatly in shaping well-being outcomes. It is also worth noting that subjective well-being is multifaceted and shaped by non-work life, personality, social environment, and more. Thus, while AI perceptions play a role, they are unlikely to dominate this domain. The more moderate coefficient suggests that other organizational, individual, and contextual variables will also be influential.

6. Implications of the Study6.1 Theoretical Implications

The present study contributes significantly to the theoretical understanding of how artificial intelligence adoption shapes employee well-being within the banking sector. By integrating the Job Demands–Resources (JD-R) framework, technostress theory, and Conservation of Resources (COR) theory, the findings demonstrate that perception of AI deployment operates as a key antecedent of both digital and subjective well-being. This reinforces the argument that AI should be examined not only as a technological artifact but also as a contextual factor that alters the balance between job demands and resources. The results extend existing scholarship that has primarily focused on productivity, efficiency, or organizational performance, by emphasizing the psychological and digital wellness of employees. Moreover, this study establishes the importance of employee perceptions as attitudinal mechanisms, thereby advancing debates on how technology acceptance and workplace well-being can be conceptually integrated. It also offers scope for future theoretical developments that incorporate mediating factors such as digital fatigue or autonomy, and moderating variables such as organizational support, AI literacy, and self-efficacy. In doing so, the present research creates a bridge between literature on technology adoption and occupational health psychology.

6.2 Practical and Managerial Implications

From a managerial standpoint, the study highlights the crucial role of employees' perceptions in determining whether AI adoption enhances or undermines workplace well-being. The findings indicate that when banking professionals perceive AI as supportive and enabling, their digital well-being improves, which in turn fosters a healthier relationship with technology by reducing digital fatigue and techno-stress. A positive perception also strengthens subjective well-being by enhancing job satisfaction, emotional stability, and overall happiness at work. These outcomes underscore the necessity for banks to focus not only on the technical deployment of AI but also on strategies that shape favorable employee attitudes. Transparent communication about the purpose and functioning of AI tools, the inclusion of employees in decision-making processes, and continuous training to build competence and confidence are critical to achieving this goal. Furthermore, the implementation of workplace practices that encourage digital balance, such as structured guidelines for technology use and respect for boundaries outside working hours, can further strengthen the positive effects of AI adoption on well-being.

Journal of Informatics Education and Research ISSN: 1526-4726

Vol 5 Issue 3 (2025)

6.3 Policy-Level Implications

At the policy level, the study underscores the need for human-centered approaches to AI integration in technology-intensive industries such as banking. As AI systems increasingly influence financial services, regulators and industry bodies must consider not only operational efficiency but also the psychological sustainability of the workforce. Ethical AI guidelines that ensure transparency, fairness, and accountability should be actively promoted, particularly in environments where employees are subject to continuous digital monitoring. Sector-specific frameworks that explicitly address digital well-being can serve as benchmarks for banks, ensuring that technological innovation does not compromise employee health. Moreover, occupational health policies should be updated to recognize the psychological and emotional impacts of AI adoption as part of overall workplace safety, complementing traditional concerns with physical health and security. By embedding well-being considerations into policy, industry leaders and regulators can foster both technological progress and sustainable workforce development.

7. Conclusion

Artificial intelligence is reshaping workplaces, and its impact extends beyond efficiency to the well-being of employees. This study examined how perceptions of AI deployment influence digital and subjective well-being within the Indian banking sector. Anchored in the Job Demands–Resources (JD-R) framework, technostress theory, and Conservation of Resources (COR) theory, the research conceptualized AI as both a supportive resource and a potential demand. The findings revealed that favorable perceptions of AI significantly enhance digital well-being by reducing digital fatigue and improving balance, while also exerting a positive though moderate influence on subjective well-being, fostering satisfaction and emotional stability. The results advance theoretical understanding by showing that employee perceptions are central to the relationship between AI and workplace outcomes. For managers, the findings stress the importance of transparent communication, employee participation, and training that fosters trust in AI tools. For policymakers, the study underscores the need for ethical guidelines that integrate well-being concerns into AI governance.

7.1 Future Research Avenues and Limitations

This study has some limitations that offer directions for future research. Its cross-sectional design restricts causal inference, suggesting the need for longitudinal or experimental approaches to capture the evolving effects of AI on well-being. Reliance on self-reported data may also introduce bias, which future studies could address through multi-source or mixed-method designs. Moreover, the focus on the Indian banking sector may limit generalizability; comparative studies across industries and cultural contexts would enhance external validity. Future research could also extend the model by testing mediators such as digital fatigue or autonomy and moderators like organizational support, AI literacy, or resilience to better explain how AI perceptions influence employee well-being.

References:

1. Arboh, F., Zhu, X., Atingabili, S., Yeboah, E., & Drokow, E. K. (2024). From fear to empowerment: The impact of employees' AI awareness on workplace well-being – A new insight from the JD-R model. *Journal of Health Organization and Management*. https://doi.org/10.1108/jhom-06-2024-0229

ISSN: 1526-4726 Vol 5 Issue 3 (2025)

- 2. Brue, M. (2025, July 21). AI will make the 'infinite workday' worse—Unless we act differently. *Forbes*. https://www.forbes.com/sites/moorinsights/2025/07/21/ai-will-make-the-infinite-workday-worse---unless-we-act-differently/
- 3. Chuang, Y. T., Chiang, H. L., & Lin, A. P. (2025). Insights from the Job Demands–Resources model: AI's dual impact on employees' work and life well-being. *International Journal of Information Management*, 83, 102887. https://doi.org/10.1016/j.ijinfomgt.2023.102887
- 4. Giuntella, O., Konig, J., & Stella, L. (2025). Artificial intelligence and the wellbeing of workers. *Scientific Reports*, 15, 20087. https://doi.org/10.1038/s41598-025-98241-3
- 5. Hamilton, D. (2025, May 6). How AI is transforming workplace mental health: Promises and pitfalls. *Forbes*. https://www.forbes.com/sites/dianehamilton/2025/05/06/how-ai-istransforming-workplace-mental-health-promises-and-pitfalls/
- 6. Hinks, T. (2024). Artificial intelligence perceptions and life satisfaction. *Journal of Happiness Studies*. https://doi.org/10.1007/s10902-024-00727-w
- 7. Jin, G., Jiang, J., & Liao, H. (2024). The work affective well-being under the impact of AI. *Dental Science Reports*, 14(1). https://doi.org/10.1038/s41598-024-75113-w
- 8. Klimova, B., & Pikhart, M. (2025). Exploring the effects of artificial intelligence on student and academic well-being in higher education: A mini-review. *Frontiers in Psychology*, 16, 1498132. https://doi.org/10.3389/fpsyg.2025.1498132
- 9. Marriott, H. R., & Pitardi, V. (2023). One is the loneliest number... Two can be as bad as one: The influence of AI friendship apps on users' well-being and addiction. *Psychology & Marketing*, 40(12), 2327–2341. https://doi.org/10.1002/mar.21899
- 10. Mayiwar, L., Asutay, E., Tinghög, G., et al. (2025). Determinants of digital well-being. *AI & Society*, 40, 3063–3073. https://doi.org/10.1007/s00146-024-02071-2
- 11. Montag, C., Nakov, P., & Ali, R. (2024). Considering the IMPACT framework to understand the AI–well-being complex from an interdisciplinary perspective. *Telematics and Informatics Reports*, 13, 100112. https://doi.org/10.1016/j.teler.2023.100112
- 12. Narayan, R. (2020). Leveraging digital intelligence for community well-being. *Journal of Community Well-Being*, 3(4), 539–558. https://doi.org/10.1007/s42413-020-00085-4
- 13. Oglesby, M. T., Boudreaux, M., Manix, K. G., Serviss, E., & Hair, J. F. (2024). AI in HR: Perception is reality. *Proceedings of the ACM Conference on Human Factors in Computing Systems*. https://doi.org/10.1145/3632634.3655879
- 14. Pansini, M., Buonomo, I., De Vincenzi, C., Ferrara, B., & Benevene, P. (2023). Positioning technostress in the JD-R model perspective: A systematic literature review. *Healthcare*, 11(3), 446. https://doi.org/10.3390/healthcare11030446
- 15. Purisiol, S. (2020). *The effects of technostress on well-being and performance: The role of social support* (Master's thesis, Tilburg University). Tilburg University Research Portal. https://arno.uvt.nl/show.cgi?fid=152718
- 16. Robinson, B. (2024, July 23). 77% of employees report AI has increased workloads and hampered productivity, study finds. *Forbes*. https://www.forbes.com/sites/bryanrobinson/2024/07/23/employees-report-ai-increased-workload/
- 17. Sadeghi, S. (2024). Employee well-being in the age of AI: Perceptions, concerns, behaviors, and outcomes. *arXiv Preprint*. https://doi.org/10.48550/arxiv.2412.04796
- 18. Shankar, A. U., Mishra, S., Malik, R., Subashini, N., & Sharma, M. (2023). Artificial intelligence's effects on mental health, human behaviour and well-being: An empirical study. *Turkish Journal of Physiotherapy and Rehabilitation*, 44(4). https://doi.org/10.52783/tjjpt.v44.i4.1013

ISSN: 1526-4726 Vol 5 Issue 3 (2025)

- 19. Shin, Y. (2024). Toward human-centered artificial intelligence for users' digital well-being: Systematic review, synthesis, and future directions. *JMIR Preprints*. https://doi.org/10.2196/preprints.69533
- 20. Soulami, M., Benchekroun, S., & Galiulina, A. (2024). Exploring how AI adoption in the workplace affects employees: A bibliometric and systematic review. *Frontiers in Artificial Intelligence*, 7, 1473872. https://doi.org/10.3389/frai.2024.1473872
- 21. Valtonen, A., Saunila, M., Ukko, J., Treves, L., & Ritala, P. (2025). AI and employee well-being in the workplace: An empirical study. *Journal of Business Research*, 199, 115584. https://doi.org/10.1016/j.jbusres.2025.115584
- 22. Wang, F. (2024). The mental well-being of digital natives in the age of AI. In *Advances in Human and Social Aspects of Technology Book Series* (pp. 88–108). IGI Global. https://doi.org/10.4018/979-8-3693-3350-1.ch005
- 23. Xu, G., Xue, M., & Zhao, J. (2023). The relationship of artificial intelligence opportunity perception and employee workplace well-being: A moderated mediation model. *International Journal of Environmental Research and Public Health*, 20(3), 1974. https://doi.org/10.3390/ijerph20031974
- 24. Yoon, S., Goh, H., Low, X. C., Weng, J. H., & Heaukulani, C. (2024). User perceptions and utilisation of features of an AI-enabled workplace digital mental wellness platform 'mindline at work'. *BMJ Health & Care Informatics*, 31(1), e101045. https://doi.org/10.1136/bmjhci-2024-101045