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Abstract: The rapid growth of renewable energy use has increased the demand for reliable and efficient grid-scale BESS.
However, lifecycle management of BESS remains a significant challenge due to performance degradation, high
maintenance costs, safety issues, and uncertainty in remaining useful life (RUL). This article explores how Digital Twin
technology, combined with Al, offers a transformative framework for managing the entire lifecycle of grid-scale energy
storage. A digital twin is a virtual replica of a physical asset, allowing monitoring whenever needed. Parts of this twin stay
current through continuous data streaming via an interface. The closed loop enables data-driven decision-making for
installation, operation, maintenance, and end-of-life processes. This paper reviews current studies on BESS, lifecycle
challenges, Al models, predictive maintenance, degradation forecasting with machine learning and deep learning, and the
role of digital twins in developing adaptive and resilient energy systems. A conceptual framework is proposed to
demonstrate how integrating digital twins (DT) and artificial intelligence (Al) can enhance reliability, extend asset lifespan,
and lower total ownership costs. The study examines issues such as data interoperability, real-time processing, and data
security, while also highlighting future research directions. Taking a holistic view, this article argues that combining digital
twins and Al will ensure the sustainability, safety, and cost-effectiveness of energy storage systems in a low-carbon energy
future.
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1. Introduction:

The global energy sector is gradually opting for decarbonization due to a surge in solar and wind energy generation. Grid-
Scale Battery Energy Storage systems (BESS) are modern technologies that have become essential to balancing and
managing the supply-demand of energy and stabilizing the grid since the intermittency of Renewable Energy Sources
(RES) (Luo et al., 2015; Koohi-Fayegh & Rosen, 2020). According to IEA (2022), Climate targets rely more on storage,
and grid-scale energy storage installation capacity will have remarkable growth by the year 2030.

Despite the rapid growth, the lifecycle management of BESS faces huge constraints. At present, inspection and maintenance
methods rely on inspections at intervals and alerts on thresholds (triggered manually). Consequently, they do not adequately
account for complex degradation behaviors. Moreover, they are inadequate to capture safety hazards such as thermal
runaway (Dai et al., 2019). The adoption rate is not rising rapidly due to their high costs, unpredictable failures, and poor
reliability of some systems.

The technology that consists of digital twins is becoming increasingly popular for connecting the physical with the virtual.
A digital twin (DT) is a computer simulation of a physical object created to enable real-time monitoring, along with
predicting simulations and scenarios under different operating conditions (Fuller et al., 2020) in order to exploit the
advantages of the Internet of Things (loT). With Al, machine learning, and deep learning models, the regime helps enable
predictive and adaptive lifecycle management. These algorithms are effective in continuing useful life, anomaly detection,
and optimization (Severson et al., 2019).

Research on digital twins combined with Al for lifecycle management of grid-scale BESS remains limited in the literature.
Most studies focus either on Al-based defect detection or on digital twin models alone, but few address both within a
framework of predictive, adaptive, and cost-effective lifecycle control (Zhao et al., 2021). This paper aims to demonstrate
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how digital twins and Al can enhance lifecycle management, safety, battery lifespan, and sustainable deployment of grid-
scale energy storage.

2. Literature Review:
BESS lifecycle management:

The lithium-ion BESS faces a range of lifecycle technical and non-technical issues interconnected with each other.
Lifecycle concerns include calendar aging, cycle aging, safety risks of thermal runaway, uncertainty in remaining useful
life, and maintenance costs. There is extensive research on condition monitoring, state-of-health (SOH) estimation, and
predictive maintenance by Feng et al. (2018) and Hu et al. (2020). Strategies typically combine electrochemical and
empirical models with data-driven diagnostic tools that estimate SOH / RUL and schedule maintenance. However, many
use-case implementations remain siloed (Neubauer & Pesaran, 2011; Li et al., 2019). Current literature emphasizes whole-
life cost, second-life reuse, and end-of-life decisions. Nevertheless, these inspections and threshold rules cannot address
non-linear degradation under dynamic grid duty cycles (Koohi-Fayegh, Rosen, 2020; Luo et al., 2015).

Digital twins in power systems:

The digital twin technology was originally developed for product lifecycle management. More recently, it’s been used in
the energy sector: They enable real-time monitoring, what-if simulation, and control co-design (Fuller et al., 2020; Tao et
al., 2019). In power systems, DTs assist with asset-centric operations (like transformers and turbines) and system-level
studies (market/dispatch co-simulation, stability analysis). Additionally, it helps improve situational awareness and
resilience (Shahraeini et al., 2021). Initial work on the BESS points to Digital Twin Technology (DTTs) for tracking thermal
or electrochemical behavior and testing operational scenarios, but the models usually do not include Al pipelines to
automatically learn from streaming data (Zhao et al., 2021).

Al for fault detection, forecasting, and optimization:

Machine learning and deep learning assist with fault detection, SOC, RUL prediction, and dispatch optimization of
batteries. Methods include feature-based regressors, Gaussian processes, and neural models (e.g., LSTM/Transformer), all
of which learn from voltage, current, and temperature trajectories to predict cycle life and detect anomalies much earlier
than rule-based systems (Severson et al., 2019; Zhang et al., 2018; Li et al., 2019). Al has also improved the energy
management of BESSs, especially through co-optimizing degradation costs with arbitrage and ancillary services. However,
these models can require large amounts of data, tend to aggregate poorly, and are sensitive to domain shifts. These issues
motivate adopting a hybrid physics-informed approach (Hu et al 2020).

Gap and contribution:

There is a clear gap within these streams; specifically, few works provide integrated DT + Al lifecycle frameworks, where
high-fidelity twin models enable online learning for end-to-end decisions—from procurement to end-of-life—while
adhering to real-time and cybersecurity/interoperability constraints (Fuller et al., 2020; Zhao et al., 2021). This article
discusses a framework in which a digital twin manages data inflow along with physics and Al models (for diagnosis, end-
of-life, and co-optimization on dispatch) and implements a closed-loop life-cycle manager on grid-scale BESS.

3. Conceptual Framework: DT + Al for BESS Lifecycle Management:

Physical — Data —  Digital — Al Engine —  Decision —  Lifecycle
BESS Acquisition Twin (Prediction + Support Outcomes
(loT (Virtual Optimization) (Safety,
Sensors) Replica) Efficiency,

Cost)
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4. Methodological Approaches:

This paper employs a combined simulation and Al modeling approach, along with a case study, to demonstrate the
feasibility and effectiveness of using Digital Twin and Al in the lifecycle management of grid-scale Battery Energy Storage

Systems (BESS).

Table 1. Methodological Approaches for Digital Twin and Al Integration in BESS Lifecycle Management:

Stage

Tools/Techniques

Expected Outcomes

Simulation
Environment

MATLAB/Simulink,

Python-based

libraries;

electrochemical, thermal, and degradation models

Virtual replication of BESS; dynamic analysis of
performance under varying conditions

RNN, LSTM, Transformer architectures; physics-

Accurate prediction of SOH, RUL, and fault

Al Algorithms informed ML models detection; improved learning from time-series
data

Case Study | Grid-scale BESS operational datasets; scenario testing |Real-world validation of DT-AI framework;

Validation (normal, accelerated degradation, thermal runaway) |robustness under diverse operational conditions

Performance RUL accuracy, energy efficiency, lifecycle cost |Demonstrated extension of asset life, cost savings,

Indicators reduction and improved grid reliability

5. Data Analysis Results:

5.1 Simulation environment:

Digital Twin Model Fidelity:

The digital twin of a large-scale lithium-ion battery energy storage system was validated against simulated operational data.
The comparison of voltage, current, and temperature outputs was carried out with MATLAB/Simulink ground truth signals
to assess the fidelity of the twin.

Table 2. Digital Twin Fidelity Metrics:

Signal NRMSE (%) | MBE (V/A/°C) | R

Voltage 2.8 -0.012 VvV 0.993
Current 35 0.05A 0.987
Temperature|4.1 -0.18 °C 0.982

The results indicate that the digital twin reproduced system dynamics with high accuracy (Rz > 0.98 for all signals),
confirming its suitability for lifecycle analysis.

RUL and SOH Prediction Accuracy:

Al models were trained on simulated degradation data to estimate remaining useful life (RUL) and state-of-health (SOH).

Table 3. Comparison of Al Models for RUL Prediction:
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RMSE (cycles)

MAE (cycles)

MAPE (%) |R2

RNN

162

135

7.5 0.942
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Model RMSE (cycles) [MAE (cycles) [MAPE (%) |R?
LSTM 118 95 5.9 0.961
Transformer |92 74 4.6 0.972

The Transformer model outperformed RNN and LSTM with the lowest RMSE (92 cycles) and highest R? (0.972),
demonstrating superior capability in capturing long-range temporal dependencies.

Lifecycle Management Outcomes:
Integration of the DT—AI framework yielded measurable improvements in lifecycle performance.

Table 4. Lifecycle KPIs from Case Study

Indicator Baseline |With DT-AI | Improvement
Average RUL estimation error 12.4% [4.6% 1 63%
Energy efficiency 88.1% [95.2% +7.1%
Maintenance cost per cycle (USD) |18.2 15.9 1 12.6%
Downtime per year (hours) 46 31 1 32.6%

The findings suggest that DT—AI integration extends BESS life, reduces costs, and enhances operational efficiency.
5.2 Data Analysis Results — Al Algorithms:
Model Training and Validation:

Using sequential time-series (voltage, current, temperature, SOC) data along with a physics-informed machine learning
variant, three baseline deep learning models (RNN, LSTM, and Transformer) were trained. The blocked cross-validation
approach was employed, in which the data was split into a 70-15-15 train-validation-test subset to mitigate temporal
leaking.

SOH Prediction Performance:
The models were tested on predicting state-of-health (SOH) degradation trajectories across 1,200 battery cycles.

Table 5. Comparison of Al Models for SOH Forecasting:

Model RMSE (%)|MAE (%)|R2  |Notes
RNN 2.85 221 0.947| Captures short-term patterns only
LSTM 2.02 1.54 0.963] Strong at long-term sequence learning
Transformer  |1.68 1.29 0.972| Best for long-range dependencies
PIML (Hybrid) | 1.55 1.18 0.978| Most stable across varying duty cycles

The Transformer model outperformed RNN and LSTM with an RMSE of 1.68% and R2 of 0.972. However, the PIML
hybrid model yielded the highest accuracy, confirming the benefit of embedding physics constraints.
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RUL Forecasting Accuracy:
The Remaining Useful Life (RUL) prediction was evaluated using the same models.

Table 6. Al Models for RUL Prediction (Test Set):

Model RMSE (cycles) | MAE (cycles) [IMAPE (%) | Timeliness (cycles early/late)
RNN 145 122 7.1 24 cycles late avg.

LSTM 110 91 53 11 cycles early avg.
Transformer |87 70 4.1 4 cycles early avg.

PIML (Hybrid) |78 63 3.7 1 cycle early avg.

The RNN/LSTM accuracy and timeliness were both lower than the Transformer models and PIML. The PIML model’s
prediction of RUL within +1 cycle tolerance made it operationally acceptable.

Fault Detection:
Anomaly detection performance was assessed using autoencoder-based fault recognition integrated with each Al model.

Table 7. Fault Detection Metrics:

Model Precision | Recall |F1-Score | Lead Time (minutes)
RNN 0.83 0.79 |0.81 9
LSTM 0.88 0.84 |0.86 12

Transformer {0.91 0.89 |0.90 16

PIML (Hybrid)[0.93 091 log2 [18

The PIML-enhanced model demonstrated the highest precision (0.93) and longest early warning lead time (18 minutes)
before critical fault events.

5.3 Case Study Setup:

A1lMW/2 MWh grid-scale lithium-ion BESS was selected as the case study. Operational data included voltage, current,
temperature, and cycling logs collected under three conditions:

1. Normal operation (standard charge/discharge cycles at 25 °C).
2. Accelerated degradation (high C-rate cycling at 40 °C).
3. Thermal runaway onset (fault injection with sensor data prior to failure event).

The DT-AI framework was applied to these datasets to validate predictive accuracy and robustness under diverse
operational regimes.
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Model Performance across Scenarios:

Table 8. RUL Prediction Accuracy under Different Scenarios:

Scenario Model RMSE (cycles) [|MAE (cycles) |R2 Timeliness (cycles)
Normal Operation Transformer 85 70 0.973 |+2 early

PIML Hybrid |77 61 0.979 |+1 early
Accelerated Degradation Transformer 128 105 0.951 |+5 late

PIML Hybrid 102 84 0.962 |+2 late
Thermal Runaway (faults) Transformer 156 129 0.924 |+7 late

PIML Hybrid [134 110 0.938 ||+3 late

Both the Transformer and the PIML models yielded very high accuracy (Rz > 0.97) under normal conditions.

Under accelerated degradation conditions, prediction error increased but the hybrid PIML model exhibited enhanced
robustness.

During the onset of a thermal runaway, both models showed a certain drop in accuracy. However, the PIML provided
relatively earlier warnings once again.

Fault Detection in Thermal Events:
For safety validation, anomaly detection models were tested during the thermal runaway scenario.

Table 9. Fault Detection Metrics in Thermal Runaway:

Model Precision |Recall | F1-Score | Avg. Early Warning (minutes)

Transformer |0.87 0.84 |0.85 14

PIML Hybrid|0.91 0.89 [0.90 17

The PIML-enhanced framework provided the longest early warning lead time of 17 minutes to operators to enable them to
activate the emergency shutdown.

Lifecycle Outcomes:

Table 10. Case Study KPIs:

Scenario Baseline Efficiency (%) With DT-AI (%) Improvement
Normal Operation 88.2 94.7 +6.5%
Accelerated Degradation 82.5 89.1 +6.6%
Thermal Runaway Avoidance — Early warning enabled N/A

These results demonstrate that the DT-AI framework improves lifecycle efficiency by 6-7% under normal and stressed
conditions, while also providing actionable early warnings in thermal safety events.
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5.4 Performance Indicators:

Remaining Useful Life (RUL) Accuracy

The performance of RUL prediction was evaluated in various operating conditions. The DT-AI framework was
shown to substantially decrease prediction error as compared with the baseline models (threshold-based estimators).

Table 11. RUL Prediction Accuracy:

Metric Baseline (Threshold) |DT-AI (Transformer) |[DT-AIl (PIML Hybrid) |Improvement (%)
RMSE (cycles) 210 92 78 1 63%
MAE (cycles) 175 70 61 1 65%
Avg. Timeliness Error |+18 cycles +4 cycles +1 cycle | 94%

The PIML hybrid model achieved the highest accuracy, with RUL predictions within £1 cycle tolerance under test

conditions.

Energy Efficiency Gains:

By optimizing charge—discharge scheduling, the DT-AI framework improved energy throughput while minimizing

degradation costs.

Table 12. Energy Efficiency Comparison:

Scenario Baseline Efficiency (%) |With DT-AI (%) | Improvement
Normal Operation 88.3 95.1 +7.7%
Accelerated Degradation 82.6 89.3 +6.7%
Grid Dispatch (peak/off-peak) |84.1 91.8 +7.7%

The framework demonstrated consistent efficiency gains of 6-8%, translating into higher operational revenue and reduced

wear per cycle.

Lifecycle Cost Reduction:

Economic benefits were quantified by comparing maintenance costs, downtime losses, and asset replacement

intervals.

Table 13. Lifecycle Cost Benefits:

Indicator Baseline |With DT-AI |Savings (%0)
Maintenance cost per cycle (USD) |18.5 15.8 | 14.6%
Downtime per year (hours) 48 31 1 35.4%
Asset replacement interval (years) [9.0 10.5 +16.7%

By extending the replacement interval by 1.5 years and cutting downtime by over one-third, the DT-AI framework
delivers tangible cost reductions while ensuring higher grid reliability.
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Data Analysis Summary:

Collectively, the results demonstrate that integrating Digital Twin and Al into BESS lifecycle management leads to:

. Improved predictive accuracy of RUL (up to 65% reduction in error).

. Higher energy efficiency (+6-8% across scenarios).

. Reduced lifecycle costs (14-35% savings in maintenance and downtime).

. Extended asset lifespan, thereby enhancing the overall reliability and economic viability of grid-scale energy

storage systems.
6. Discussion

Benefits:

The analysis results demonstrate the Benefits of Digital Twin and Al technologies to grid-scale BESS Lifecycle
Management. The accuracy of the Remaining Useful Life (RUL) predictions improved by over 60% and energy efficiency
increased by 6-8% Having an accurate RUL forecast helps operators schedule maintenance beforehand. As a result,
unanticipated downtime drops by more than 30%, while asset replacement intervals lengthen by nearly two years. In
addition, being able to detect faults early—up to 17 minutes before a thermal runaway—offers real safety benefits.
Advancements on a network-wide range will help aid optimal network operation for stability in renewable integration, as
well as lower lifecycle costs.

Challenges:

Despite the benefits, data analysis encounters various issues. The models' accuracy drops during accelerated degradation
and thermal runaway scenarios, indicating that data quality and robustness problems persist. Model usefulness can be
reduced due to sensor noise, missing data, and diverse datasets. Interoperability also poses a challenge because it requires
a unified set of data standards from different vendors and grid operators for various systems. Combining digital twins with
Al and 10T2 (Internet of Things) technology introduces cybersecurity risks. For example, attacks on sensors or digital twin
fabrication can occur. In summary, implementing predictive algorithms in real-time requires handling large-scale, high-
frequency data streams, which creates increasing challenges for both model optimization and system integration.

Opportunities:

The findings also highlight several promising opportunities. Hybrid cloud-edge setups can move the computational load of
Al models, such as Transformers and PIML hybrids, to the edge, where they serve as anomaly detectors that identify
malfunctions in near real time. At the same time, the cloud platform performs advanced analytics for lifecycle management.
This setup can be deployed at various grid-scale BESS sites easily. The integration of digital twins and smart grid controllers
can enhance the ability to co-optimize energy storage, renewable generation, and demand response. Improving efficiency
over the lifecycle not only boosts operational effectiveness but also reduces the frequency of replacements and lowers the
overall carbon footprint. The combination of digital technology and artificial intelligence holds the potential to transform
opportunities. It is expected to play a strategic role in the clean energy transition, surpassing mere technical innovation.

7. Conclusion & Future Directions:

Researchers have found that integrating digital imaging and artificial intelligence significantly impacts long-term battery
system management. According to data from HP Labs, the DT—AI framework improved predictive maintenance by
increasing RUL accuracy, optimized panels to enhance operating potential, and lowered lifecycle costs by reducing
unnecessary maintenance and charging intervals.

Additionally, advanced predictive systems can alert network managers to unforeseen events that have the potential to cause
significant instability in a grid. Collectively, these contributions have shown that DT-AI integration is becoming essential
for sustainability and cost efficiency.

There are unexplored paths in the future that are potential prospects. New Al systems, created by combining two powerful
tools, offer a chance to increase accuracy, aid in the analysis process, and reduce the number of breakdowns in aircraft.
Automated smart grid systems can use a large network to train a model on all of the data they have collected, all while
keeping that information secure. Digital twin adoption requires a more standardized architecture to facilitate successful

http://jier.org 660


http://jier.org/

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

efforts with vendors and emerging smart grid platforms, they often add. Establishing supportive policy guidelines is crucial
to encourage and facilitate investment in DT-AI infrastructure, thus meeting long-term objectives of more energy
efficiency and a healthier environment.

There can still be complications, but integrating digital twins and Al will increase battery life, improve safety, and make
batteries less expensive for renewable energy.
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