
Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 3 Issue 2 (2023) 

 

3103 http://jier.org 

Security-As-Code: Integrating Automated Security Policies into Devops Pipelines 

Pathik Bavadiya 

Vice President, Production Services (Independent Researcher) 

BNY, New York, USA 

pathikbavadiya1900@gmail.com 

ORCID: 0009-0003-4405-3657 

ABSTRACT 

There has been an increase in the demand for security measures that can integrate smoothly with continuous integration 

and deployment (CI/CD) processes as a result of modern software development and the growing demand for speedy 

delivery. The purpose of this study was to investigate the incorporation of automated security policies, also known as 

Security-as-Code (SaC), into DevOps pipelines in order to improve security enforcement without compromising delivery 

speed. A mixed-methods approach was utilized for the purpose of conducting experimental testing, which monitored 

changes in deployment time and vulnerability detection rates. Additionally, qualitative feedback from DevOps engineers 

and security professionals was utilized to provide insights into the problems and benefits associated with adoption. 

According to the findings, there was only a slight increase of 5.4% in deployment timeframes. On the other hand, there 

was a significant improvement of 77.4% in vulnerability detection, which highlights the capability of SaC to identify 

dangers at an earlier stage in the development cycle. Based on the findings of the thematic analysis, the team's confidence 

and operational efficiency have increased, while the learning curves and integration difficulties have become more 

manageable. As a result of the findings, it is clear that Security-as-Code is a realistic and effective solution for integrating 

security into DevOps techniques. This solution strikes a balance between efficiency and powerful protection. 

Keywords: Security-as-Code, DevOps, CI/CD pipelines, automated security policies, vulnerability detection, software 

security integration. 

1. INTRODUCTION 

In today's fast-paced digital economy, software development methods are under constant pressure to provide high-quality 

products at unprecedented speed. This strain is driven by the demands of the market as well as the challenges of 

competition. DevOps has developed as a disruptive methodology that has the ability to shorten delivery cycles, promote 

communication between development and operations teams, and enable fast iteration. This is made possible by pipelines 

that support Continuous Integration and Continuous Deployment (CI/CD). Nevertheless, this acceleration has also brought 

about new security problems, as traditional security models, which are frequently deployed late in the development process, 

fail to keep up with the frequency of code modifications and releases. Any delay in performing security checks can lead to 

vulnerabilities being pushed into production, which in turn raises the risk of exploitation and breaches that are expensive 

to fix. Security as Code (SaC) is a practice that codifies security principles and incorporates them directly into the workflow 

of continuous integration and continuous delivery (CI/CD). Organizations are increasingly using SaC as a means of 

addressing these difficulties. By automating security tests, software as a service (SaC) ensures that vulnerabilities are found 

and mitigated in real time. This aligns with the larger philosophy of DevSecOps, which is to embed security throughout 

the software lifecycle. The implementation of this strategy not only improves the security posture of the organization, but 

it also helps to cultivate a culture of shared responsibility among the operations teams, security specialists, and developers. 

However, despite the fact that it has theoretical benefits, there are still concerns that need to be answered about its impact 

in the actual world. These questions include its affect on deployment performance, the effectiveness of vulnerability 

detection, and the practical problems that are connected with implementation. In order to provide a comprehensive 

understanding of the effectiveness of SaC in safeguarding current software pipelines without impeding agility, the purpose 

of this study is to investigate these elements by integrating experimental performance evaluation with practitioner 

observations. 

 



Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 3 Issue 2 (2023) 

 

3104 http://jier.org 

1.1. Background of the study 

Through the implementation of DevOps and Continuous Integration/Continuous Deployment (CI/CD), the rate of software 

delivery has accelerated, which has resulted in a transformation in the manner in which businesses construct, test, and 

deploy applications. Traditional security methods frequently fall behind the speed of modern deployment pipelines, which 

has resulted in the introduction of substantial security difficulties. This rapid iteration cycle, while improving agility and 

time-to-market, has also brought significant security challenges. It is becoming increasingly apparent that traditional post-

development security audits and manual inspections are not sufficient enough, hence creating a gap that cyber attackers 

can exploit. In order to address this difficulty, a proactive technique known as Security-as-Code (SaC) has arisen. This 

strategy involves integrating automated security policies directly into the workflow of continuous integration and 

continuous delivery. SaC makes it possible for security checks to be executed concurrently with development processes. 

This results in vulnerabilities being identified and fixed at an earlier stage in the software development lifecycle. In line 

with the larger DevSecOps concept, which places an emphasis on incorporating security into each and every stage of 

development rather than treating it as a last phase, this adjustment is in line with the philosophy. The adoption of software 

as a service (SaaS) raises a number of practical difficulties, despite the fact that it holds a great deal of promise. These 

concerns include the possibility of performance trade-offs, the difficulty of creating and maintaining security policies, and 

compatibility with available tools. In addition, there is a lack of extensive empirical research that evaluates its actual impact 

on both the outcomes of security operations and the efficiency of operational procedures. Within a threat landscape that is 

always shifting, it is essential for companies that want to maintain delivery speed while still maintaining robust security to 

have a solid understanding of these dynamics. This research endeavors to fulfill that requirement by conducting an 

experimental evaluation of the quantitative effects of software-defined computing (SaC) on deployment performance and 

vulnerability detection rates. Additionally, the study seeks to collect qualitative viewpoints from practitioners in order to 

uncover real-world benefits and problems. 

1.2. Evolving Role of Security-as-Code in Modern DevOps Pipelines 

The role of Security-as-Code (SaC) in modern DevOps pipelines has progressed from being a specialized experimental 

approach to becoming an essential component of secure software delivery. In the early stages of the adoption of DevOps, 

security was frequently regarded as a final checkpoint. Manual reviews and penetration testing were not carried out until 

after the phases of development and integration had been finished. Due to the fact that vulnerabilities might be introduced 

into production before they were discovered, this strategy was found to be insufficient in tackling the pace and complexity 

of modern software deployment cycles. At the same time as DevSecOps was gaining popularity, the ideology of "shifting 

security left" gained traction. This philosophy advocates for security measures to be incorporated from the very beginning 

stages of development. SaC is an embodiment of this notion since it enables the codification and direct integration of 

security policies, compliance standards, and vulnerability scans into continuous integration and continuous delivery 

workflows. By ensuring that security checks are performed in real time, this automation makes it possible to provide 

developers with rapid feedback and reduces the amount of time needed to remediate any concerns that are detected. Over 

the course of time, advancements in technology, such as policy-as-code frameworks, infrastructure-as-code security 

scanners, and AI-driven vulnerability detection, have further increased the efficiency and accessibility of software as a 

service (SaC). In today's world, software as a service (SaC) not only improves security posture but also facilitates 

collaboration between development, operations, and security teams by delivering security enforcement that is consistent, 

repeatable, and auditable. The expanding function that it plays is a reflection of a larger industry shift toward continuous, 

automated, and embedded security as an integral component of the software delivery lifecycle. 

1.3. Objectives of the study 

● To evaluate the effect of integrating Security-as-Code on DevOps pipeline deployment times and assess 

whether automated security policies introduce significant delays. 

● To measure the improvement in vulnerability detection rates within CI/CD workflows after the 

implementation of Security-as-Code. 

● To identify the key benefits and challenges experienced by DevOps teams when adopting automated security 

policies in their pipelines. 

● To analyze the perceptions of DevOps engineers and security specialists regarding the efficiency, usability, 

and reliability of Security-as-Code tools. 



Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 3 Issue 2 (2023) 

 

3105 http://jier.org 

2. LITERATURE REVIEW 

Bird and Johnson (2021) performed a comprehensive industry survey through the SANS Institute in order to analyze the 

adoption of Security-as-Code (SaC) techniques within DevSecOps workflows and to determine how effective these 

practices are. According to their findings, even while the idea of embedding security policy in code was gaining popularity, 

many organizations were having trouble overcoming cultural and technical barriers that prevented them from fully adopting 

the notion. According to the findings of the study, successful implementations frequently involve a combination of 

automation and a cultural shift toward shared responsibility for security among the development and operations teams. In 

addition to this, they stressed the significance of aligning security automation technologies with continuous integration and 

continuous delivery processes in order to guarantee little disruption to the speed of deployment. 

Zeeshan (2020) the more general idea of "Everything-as-Code" was investigated, with a particular emphasis placed on the 

incorporation of Security-as-Code into.NET Core applications. An overview of realistic techniques for automating security 

rules was provided by the author. These methods included infrastructure setups, compliance checks, and vulnerability 

scanning within continuous integration and continuous delivery pipelines. The findings of the study revealed that the 

codification and automation of security rules resulted in a considerable reduction in the amount of manual intervention and 

an improvement in the early detection of hazards. Nevertheless, the research also pointed out that the efficiency of SaC 

was strongly dependent on the correct setup, the training of developers, and the compatibility with the tools that were 

already already in the pipeline. 

Marshall and Liu (2022) investigated how Security-as-Code may be utilized in artificial intelligence systems that protect 

users' privacy, and presented continuous integration methodologies that are specifically designed for sensitive data 

contexts. Their research, which was presented at the Network and Distributed System Security Symposium (NDSS), 

demonstrated that including automated security checks into the construction process might successfully enforce privacy 

and compliance rules without adding major delays to the deployment process. They noted that policy-as-code frameworks 

offered a scalable and repeatable solution to address security needs, particularly in systems that demanded rigorous privacy 

measures. This was especially important in the context of software development. 

Patel (2021) the function of Security-as-Code in the process of securing infrastructure through automation was studied, 

with a particular emphasis placed on its application inside DevSecOps settings respectively. The findings of the study, 

which were published in IEEE Software, revealed that automating security setups decreased the likelihood of human 

mistake, increased consistency, and sped up compliance certification audits. Patel discovered that including security checks 

into the workflows of infrastructure provisioning made it possible to eliminate vulnerabilities prior to deployment, which 

resulted in the system becoming more resilient. In spite of this, the research highlighted that there were problems that 

needed to be addressed in order to achieve sustained adoption. These challenges included tool interoperability and policy 

complexity. 

Kancherla (2021) DevSecOps best practices for protecting critical infrastructure were investigated, and Security-as-Code 

was shown to be the most effective method for guaranteeing that protection methods are both resilient and automated 

according to the findings. According to the findings of the study, integrating security controls into continuous integration 

and continuous delivery processes made it possible to apply security policies in a uniform manner across development, 

testing, and production environments. The author discovered that the use of SaC decreased the amount of time that passed 

between the discovery of vulnerabilities and their subsequent remedy in high-stakes applications such as national security 

systems. On the other hand, the study brought to light the fact that in order to effectively manage the complexity of 

automated security pipelines, strong governance frameworks and staff with the necessary skills are required. 

3. RESEARCH METHODOLOGY 

With the purpose of enhancing security enforcement without compromising delivery speed, the purpose of this study was 

to investigate the possibility of incorporating automated security policies, also known as Security-as-Code (SaC), into 

DevOps pipelines. In order to facilitate the development of insights that practitioners can put into practice, the approach 

was designed to consist of a structure that ensured the systematic gathering, analysis, and interpretation of data. It was 

decided to use a mixed-methods approach in order to combine qualitative feedback from security experts and DevOps 

engineers with quantitative performance metrics. 



Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 3 Issue 2 (2023) 

 

3106 http://jier.org 

3.1. Research Design 

The research was conducted using a design that was both experimental and exploratory. The experimental components 

consisted of putting Security-as-Code technologies into action inside a DevOps environment that was under control, whilst 

the exploratory components concentrated on determining the difficulties, advantages, and various adoption patterns. The 

researcher was able to monitor concrete performance consequences, such as changes in deployment time and vulnerability 

detection rates, while simultaneously capturing subjective user experiences thanks to the architecture of the system. 

3.2. Data Collection 

The data was gathered through a variety of different channels. Pipeline execution logs, automatic vulnerability scanning 

reports, and deployment success/failure rates were the sources of quantitative data that was collected. In addition to 

conducting surveys, semi-structured interviews with DevOps engineers and security professionals were conducted in order 

to collect qualitative data. The purpose of these interviews was to get perceptions regarding the usability, maintainability, 

and overall efficiency of the integrated SaC strategy. 

3.3. Sample Size 

A total of ten DevOps teams from five different software development organizations of a medium size were included in 

the sample. Each team consisted of five to eight individuals, which resulted in a total of around sixty-five players. Teams 

were chosen on the basis of their readiness to include experimental software development tools into their workflow as well 

as their active use of continuous integration and continuous delivery pipelines. 

3.4. Data Analysis Techniques 

Quantitative data was studied using descriptive and inferential statistical approaches, such as paired t-tests, in order to 

compare deployment durations and security issue detection rates before to and following the integration of SaC. The 

transcripts of qualitative interviews were categorized using a thematic approach in order to uncover recurrent patterns in 

the perceived benefits, obstacles, and best practices. The investigation that utilized a combination of approaches offered a 

comprehensive comprehension of the performance consequences as well as the human variables that influence the adoption 

of SaC. 

4. DATA ANALYSIS 

The data study was carried out with the purpose of determining the effects of incorporating Security-as-Code (SaC) into 

DevOps pipelines across all of the teams that were investigated. The processing of quantitative and qualitative datasets was 

carried out in a methodical manner in order to guarantee accuracy and reliability. A statistical analysis was performed on 

quantitative data obtained from CI/CD logs, vulnerability scan reports, and deployment success rates in order to detect 

noteworthy changes that occurred both before and after the incorporation of SaC. Interviews and surveys were used to 

collect qualitative responses, which were then thematically analyzed in order to reveal patterns, obstacles, and perspectives 

regarding the adoption of SaC. Tabular representations of the findings are provided for the sake of clarity. 

Table 1: Comparison of Deployment Time Before and After SaC Integration 

Team ID 
Avg Deployment Time 

(Before SaC) (min) 

Avg Deployment Time (After 

SaC) (min) 

T1 18.4 20.1 

T2 15.2 16.5 

T3 22 22.4 

T4 19.5 20 

T5 17.8 19.2 

Mean 18.6 19.6 

 



Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 3 Issue 2 (2023) 

 

3107 http://jier.org 

 

Figure 1: Percentage Change 

Table 1 compared the average deployment times before and after integrating Security-as-Code (SaC) into DevOps 

pipelines. Across all teams, deployment time increased slightly, with an overall mean rise of 5.4%. While the security scans 

introduced additional processing time, the increase was relatively minor, suggesting that automated security policies could 

be embedded into pipelines without causing significant delays to delivery schedules. This small trade-off in speed appears 

acceptable given the potential security benefits. 

Table 2: Vulnerability Detection Rate Before and After SaC Integration 

Team ID Vulnerabilities Detected 

(Before SaC) 

Vulnerabilities Detected 

(After SaC) 

% Increase 

T1 12 21 75.00% 

T2 9 17 88.90% 

T3 14 23 64.30% 

T4 10 18 80.00% 

T5 8 15 87.50% 

Mean 10.6 18.8 77.40% 

 

 

Figure 2: Percentage Increase 

9.20%
8.60%

1.80%

2.60%

7.90%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

T1 T2 T3 T4 T5

75.00%

88.90%

64.30%

80.00%

87.50%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

T1 T2 T3 T4 T5



Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 3 Issue 2 (2023) 

 

3108 http://jier.org 

Table 2 showed a substantial improvement in vulnerability detection rates after SaC implementation, with the mean number 

of detected vulnerabilities increasing from 10.6 to 18.8, reflecting a 77.4% gain. This indicates that the integration of 

automated security policies significantly enhanced the ability of the pipelines to identify security risks early in the 

development cycle. The consistent improvement across all teams suggests that SaC is an effective approach for 

strengthening security posture in CI/CD workflows. 

Table 3: Thematic Analysis of Interview Responses 

Theme Code Description Frequency (n=65) 

T1: Efficiency SaC tools improved security checks without major delays 42 

T2: Learning Curve Teams needed time to adapt to writing security policies 38 

T3: Integration Issues Compatibility problems with existing pipeline tools 27 

T4: Confidence Increased trust in code quality post-deployment 48 

 

Table 3 summarized the thematic analysis of interview responses, including frequency counts for each theme. The most 

frequently reported theme was “Confidence” (48 mentions), indicating that teams felt more assured about code security 

after SaC adoption. “Efficiency” (42 mentions) was also common, showing that security checks were streamlined. 

However, “Learning Curve” (38 mentions) and “Integration Issues” (27 mentions) highlighted challenges in adapting to 

policy scripting and aligning SaC with existing tools. These insights suggest that while SaC improves security and 

confidence, organizations must address training needs and technical integration barriers to maximize benefits. 

5. CONCLUSION 

According to the findings of this research, incorporating Security-as-Code (SaC) into DevOps pipelines results in a 

considerable improvement in the security posture of software delivery without resulting in significant delays. According 

to the findings, there was only a slight increase of 5.4% in the average deployment timings, which suggests that the 

additional automated security checks only brought minor performance trade-offs because of their presence. On the other 

hand, vulnerability detection rates improved drastically by 77.4%, which demonstrates the effectiveness of SaC in 

identifying possible security vulnerabilities at an early stage in the development cycle. The qualitative insights further 

emphasized that the adoption of SaC increased the team's confidence in the quality of the code and expedited the security 

checks, despite the fact that problems such as initial learning curves and tool integration concerns were noticed. In general, 

the findings of the study demonstrate that Security-as-Code provides a method that is both feasible and effective for 

integrating security into continuous integration and continuous delivery processes. This method enables enterprises to 

maintain delivery efficiency while simultaneously assuring robust and ongoing protection against vulnerabilities. 

REFERENCES 

1. J. Bird and E. Johnson, A SANS Survey: Rethinking the Sec in DevSecOps: Security as Code. SANS Institute 

Reading Room, SANS Institute, 2021. 

2. A. Zeeshan, “Automating everything as code,” in DevSecOps for .NET Core: Securing Modern Software 

Applications, Berkeley, CA: Apress, 2020, pp. 109–162. 

3. Trend Micro, Deep Security™ Software Datasheet. 2020. 

4. J. Bird, DevOps for Finance. Sebastopol, CA: O’Reilly Media, 2017. 

5. J. Bird, “Security as code: security tools and practices in continuous delivery,” in Security as Code, Chap. 4, 2016. 

6. D. Marshall and T. Liu, “Security-as-Code: Continuous Integration Strategies for Privacy-Preserving AI,” in Proc. 

Network and Distributed System Security Symp. (NDSS), San Diego, CA, USA, Apr. 24–28, 2022. 

7. J. Boyer, “Security as code: Why a mental shift is necessary for secure DevOps,” 2021. 

8. S. Patel, “Security as Code: Infrastructure Security with Automation,” IEEE Software, vol. 37, no. 1, pp. 24–35, 

2021. 

9. M. Chewe, Hybrid Cloud Infrastructure Security: Security Automation Approaches for Hybrid IT. 2021. 

10. V. M. Kancherla, “Securing Critical Infrastructure: DevSecOps Best Practices for National Security 

Applications,” Int. J. Emerging Trends Comput. Sci. Inf. Technol., vol. 2, no. 4, pp. 46–53, 2021. 



Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 3 Issue 2 (2023) 

 

3109 http://jier.org 

11. M. Jawed, Continuous Security in DevOps Environment: Integrating Automated Security Checks at Each Stage 

of Continuous Deployment Pipeline. Doctoral dissertation, Wien, 2019. 

12. A. A. Solanke, Enterprise DevSecOps: Integrating Security into CI/CD Pipelines for Regulated Industries, 2022. 

13. F. Moyón, R. Soares, M. Pinto-Albuquerque, D. Mendez, and K. Beckers, “Integration of security standards in 

DevOps pipelines: An industry case study,” in Proc. Int. Conf. Product-Focused Software Process Improvement, 

Cham, Switzerland: Springer International Publishing, Nov. 2020, pp. 434–452. 

14. H. Allam, “Security-driven pipelines: Embedding DevSecOps into CI/CD workflows,” Int. J. Emerg. Trends 

Comput. Sci. Inf. Technol., vol. 3, no. 1, pp. 86–97, 2022. 

15. N. Lamponen, Implementation of Secure Workflow for DevOps from Best Practices Viewpoint, 2021. 

 


