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Abstract : Modern networks face fast-evolving attacks and strict false-alarm budgets, making accurate, adaptive intrusion 

detection essential. This work targets that gap with a deep-learning–driven IDS tailored to flow data, focusing on the NF-

UNSW-NB15 dataset. We first motivate the problem: single classifiers or static thresholds often miss minority attacks or 

trigger excessive alerts under shift and imbalance. Our method couples a deep learning ensemble with a reinforcement 

learning (RL) controller. Tabular flows are preprocessed via scaling and one-hot encoding, then fed to diverse base learners 

(ANN, CNN, BiLSTM). Their calibrated probabilities are stacked by a lightweight meta-network to form a robust DL 

ensemble. An RL policy operates on batch-level traffic context (class priors, score dispersion, recent errors) to select the 

operating threshold and, when useful, down-weight a weak base model—directly optimizing a cost-sensitive reward that 

prioritizes recall while controlling false positives. We add drift checks and early-stopping to ensure stable, efficient 

inference. Using NF-UNSW-NB15 with stratified splits and cross-validation, the proposed system achieves 99.8% 

accuracy, 0.998 F1, a 99.7% detection rate (attack recall), and a 1.05% false positive rate, with 0.54 s batch-level runtime 

on CPU. Compared to the MSIDS baseline (97.8% accuracy, 2.5% FPR, 94.8% detection, 0.85 s), this yields +2.0 

percentage points accuracy, a 58% FPR reduction, +4.9 points detection-rate gain (~5.2% relative), and 36% faster 

execution. These results indicate a practical, high-accuracy IDS that is both fast and resilient to evolving traffic. 

Keywords : Intrusion Detection System, Deep Learning, Ensemble Learning, Reinforcement Learning, NF-UNSW-NB15, 

Network Security, Anomaly Detection. 

1. Introduction 

Modern enterprise networks generate massive volumes of heterogeneous traffic while facing fast-evolving, low-prevalence 

attacks. Conventional intrusion detection systems (IDS)—whether signature based or single supervised models—often 

struggle under these conditions. They either miss minority attacks (high false negatives) or overwhelm analysts with false 

alarms when thresholds are tightened. Class imbalance, non-stationary distributions (concept drift), and the need for near-

real-time inference further complicate deployment. To address these challenges, we target the NF-UNSW-NB15 dataset, a 

NetFlow-style reformulation of UNSW-NB15 containing rich flow, protocol, and packet-level attributes suited to tabular 

machine learning and deep models alike. 

This work proposes a high-accuracy IDS that combines deep learning ensembles with reinforcement learning (RL) control. 

After a standardized preprocessing pipeline (one-hot encoding for categorical fields and scaling for numerics via a 

ColumnTransformer), we train diverse base learners—feed-forward ANN, CNN over ordered feature channels, and 

BiLSTM for temporal proxies. Their calibrated probabilities are stacked by a lightweight meta-network, yielding a robust 

deep ensemble that benefits from complementary inductive biases. An RL policy observes batch-level context (class priors, 

score dispersion, recent errors) and dynamically selects the operating threshold and optional down-weighting of weak base 

models. The reward is cost-sensitive, directly penalizing missed attacks while constraining false positives. Practical 

safeguards—early stopping, drift checks, and probability calibration—promote stability and low latency. 

On NF-UNSW-NB15, the proposed system achieves 99.8% accuracy, 0.998 F1, a 99.7% detection rate (attack recall), and 

a 1.05% false positive rate, with 0.54 s batch-level CPU runtime. Relative to a strong MSIDS baseline reported in prior 

work (97.8% accuracy, 2.5% FPR, 94.8% detection, 0.85 s), our approach delivers +2.0 percentage-point accuracy, a 58% 
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reduction in FPR, +4.9 points in detection rate (~5.2% relative), and 36% faster execution—indicating a practical path to 

high-recall, low-noise IDS at production speeds. 

Key contributions 

• DL ensemble for tabular network flows: A calibrated stacking architecture (ANN/CNN/BiLSTM → meta-

network) tailored to NF-UNSW-NB15’s heterogeneous features. 

• RL-guided decision control: A lightweight policy that adapts thresholds and base-model weights to traffic context 

using a cost-sensitive reward, improving recall with minimal false alarms. 

• Deployment-oriented pipeline: Reproducible preprocessing, early stopping, and drift monitoring that sustain sub-

second CPU inference. 

• Comprehensive evaluation: Stratified splits and cross-validated experiments demonstrating state-of-the-art 

accuracy, markedly lower FPR, higher detection rate, and faster runtime than the MSIDS baseline. 

2. Literature Review 

Artificial Intelligence (AI)-enabled Intrusion Detection Systems (IDS) constitute a building block of modern cybersecurity 

by using machine learning and deep learning techniques to identify anomalies in the high-volume traffic while minimising 

false positives, and reconfiguring themselves to adapt to evolving attack surfaces and legal requirements, yet they struggle 

with issues such as data-quality requirement, training-data scale, and false-negative risk driving needs for tighter integration 

with threat intelligence feeds, response automation, and zero-day immunity [1]; within health technology domains like 

Internet of Medical Things (IoMT), these stakes are heightened because constrained medical devices are poorly 

authenticated enlarging the attack surface which lead an organised treatment on how key elements of AI-based IDS design 

datasets security considerations detection workflows evaluation metrics open challenges converge in a research roadmap 

safeguarding clinical data and devices [2]; across IoT more broadly recent systematic work structures prevalent attacks 

against available IDS architectures comparing centralized distributed federated training paradigms as well as 

cloud/fog/edge deployments—tying them back to dataset choices together with validation metrics highlight persisting real-

world reliability lifecycle challenges [3]; complimentary surveys covering both traditional advanced IDS technologies 

position these AI strategies alongside scalability performance concerns false/alarm reduction claims on cloud networks 

virtualised manufacturing environments heterogeneous testbeds introduce emerging facilitators such as blockchain to a 

decentralised confidence procedure [4]; when looking ahead large language models (LLMs) stand ready for reshaping 

Network IDS providing “intelligent” ML/DL pipelines enriched by “cognitive” capabilities context reconciliation beyond 

structured/unstructured telemetry explainable reasoning controller-style co-ordination orchestrating tools proactive 

discovery automated reaction surfacing novel non-functional aspects reliability trust operational alignment carcasses most 

contentious points[5]. 

Deep learning has been the current trend in intrusion detection across next-generation networks particularly 6G to cater for 

smart variants of high-dimensional traffic and complex attacks which rapidly learn and evolve, as verified through using 

LSTM-RNNs optimized with NADAM optimizer in capturing temporal attack patterns, resolving vanishing gradients, 

thereby out-performing RMSprop, Adagrad and Adam across all reported evaluations (efficiency = 9.45%, FAR = 9.85%), 

hence complementing imminent blockchain-based spectrum/data-sharing defenses [6]. The proliferation of IoT/IoMT 

escalates the number of areas for attackers to exploit, overburdening rule- or statistics-based IDS; surveys show deep 

learning makes it possible for hierarchical representation learning to be performed in real-time anomaly detection and 

points out restrictions (e. g., device heterogeneity, constraints on resources and dynamics topology) as well as demanding 

continued datasets/metrics so generalization/operational efficacy can be evaluated [7], [9]. A focused systematic review by 

[8], in the years 2020–2024, further bifurcates research across deep learning, reinforcement learning and ensemble learning 

approaches (both from a training perspective as well as upon deployment regimes) as applied to the intrusion detection 

problem, laying out advantages (adaptable or robust) against disadvantages (the heavy reliance on data or stability issues 

or qualitative progress over interpretability), hence specifing improvements due to practical needs and still pursuing gaps 

of literature for resilient IDS design. As a foundation to replicate such improvements, the Gotham testbed supplies an IoT 

dataset instantiated in the wild with records from 78 emulated devices with traffic data and attacks sampled (e.g. DoS, 

Telnet brute force, scanning, CoAP amplification, C&C) and collected as PCAP on per-device collection gateway-interface 



Journal of Informatics Education and Research 
ISSN: 1526-4726 
Vol 5 Issue 4 (2025) 
 

175 http://jier.org 

(MQTT/CoAP/RTSP), then process using Tshark to labeled CSV providing sufficient context for robust training-validation 

of state-of-the-art IDS pipelines in authentic large-scale environment at-scale scenarios [10]. 

Industry-4. 0 energy systems underscores need for scalable combination of supervised and unsupervised learning in IDS; 

in smart renewable grids, AI-augmented multi-stage approach (e.g. Random Forest+autoencoders) reaches ~97.8% 

detection with fewer FPs, shows hybrid pipelines can secure critical infrastructure in real time [11]; Internet of Drones 

(IoD) introduces resource-constrained, dynamic aerial networks where a SLR via PRISMA method (2014–2024; 62 

studies) catalogs IDS types, algorithms; datasets; attack taxonomies; tooling while other findings indicate high false-

positive rates and incompleteness against evolving threats [12]; comprehensive security framework across 5G towards 6G 

integrates top ML techniques into I^2P^2 detections against Macrophage mult viruses architectural vulnerabilities privacy-

preserving opportuntistic addition to emergence regulation as e.u ai act culminating an improved Wireless Intrusion 

Detection Algorithm show promising results[email protected], highlighting the gains made [13] Metaverse-centered 

surveys develop taxonomy of NIDS-designs from network-layer perspective between '21-'24 also identifies knowledge 

gaps- explainability/ trustworthiness/ scalability/robustness essential complexities for on-the-fly resistances at immersive 

contexts[14]; larger IoT overviews map existing ML/DL-based IDS challenges/methods/datasets problemses 

scale/resource limits/data-prvanaabilities mapping vis-a-vis design imperative guides substantiate formidably-efficiently-

intelligently-dyoable protections constructivities[15]; systematic review federated learning(2020–2024; )studies indicates 

FL’s promise under decentralized,rugged privacy-speculative state personalized IDS w/o raw-data sharing limitations 

dataset diversity heterogeneity aggregational robustive research soft-spots seminal research cues community 

frontiersweetings[16]. 

These models are assessed on a variety of datasets (KDD Cup, NSL-KDD, UNSW-NB15 and Kyoto) for smart grids, 5G 

& IoT botnets.' 'Classical ML/SATS techniques include SVMs, RF's and Gradient Boosting along with relational 

comparison methods such as Decision Trees (DT), Naive Bayes (NB), K-Nearest Neighbors/ Brute force and ensembled 

methods.' 'This paper takes a look at Domain-Specific detection of ML/DL approaches across Smart Grid based IDS [17]. 

To this end, a smart-grid pipeline that combines temporal modeling (RNN) with margin-based classification (SVC) through 

preprocess–detect–classify stages provides real-time identification of known and especially zero-day attacks at ~100% 

average accuracy on well-established datasets like the UNSW-NB15 and BoT-IoT datasets [18], demonstrating resource-

friendly precision with minimal false positives for operational usage. In 5G networks, the analysis on authenticated 

incoming data the dataset i.e., 5G-NIDD dataset shows that KNN scored highest in terms of accuracy/ROC-AUC and 

Voting ensemble performed best in precision/F1 followed by DT/Bagging/Extra Trees lead to recall and AdaBoost 

performs poor overall, as well as pointing out the potential of DL and deep transfer learning (BiLSTM, CNN, ResNet, 

Inception) for sparse piece-wise encrypted flows such evolving traffic like e.g., network-slicing DDoS accompanied by a 

requirement for larger labeled corpora and adaptive defenses is made [19]. In complement, IoT botnet studies of DL-based 

IDS summarize techniques, datasets and open issues (heterogeneity, resource constraints, privacy) as the guidelines and 

directions towards robust and scalable detection on low-capacity devices [20]. 

Recent surveys formalize paper-selection/bibliometrics, provide an overview of Transformers fundamentals and discuss 

IDS architectures spanning attention models, BERT/GPT-style LLMs, CNN/LSTM-Transformer hybrids and the emerging 

ViTs for use in computer networks, IoT (Internet-of Things), critical infrastructure defense cloud security SDN (Software 

Defined Networking) autonomous vehicles context-aware analysis robust text/tabular telemetry parsing interactive 

workflows but emphasize open research questions such as interpretability scalability adaptableness to fast-evolving attacks 

[21]. On top of this architectural progress, recent comparative work —Empirical Edge-Located Investigation— 

characterizing the energy and CPU consumption in operating ML-based IDS on SDN-aware resource-constrained IoT 

gateways when under some real-time threats both with/without use of SDN shows a compelling rise in these metrics 

(discussed via ANOVA) revealing that traditional ML IDS can be less efficient per-vertex than their DL counterparts at 

the edge enabling informed placement and orchestration decisions in SDN/IoT network scenarios [22]. A DLMLP/L/SM 

pipeline on CICIoT2023 integrates ANN/CNN/RNN with an MLP for real-time IDPS capabilities at the modeling layer, 

yielding >85% accuracy and ≈99% precision, outperforming DT/SVM baselines [23]. A GFS-GAN-based method 

combining min–max normalization, t-SNE feature extraction, Genetic Fuzzy Systems and a GAN classifier achieves further 

improvements, obtaining 99.23% accuracy on TII-SSRC-23 and 99.13% on NSL-KDD [24], indicating the possibility to 

develop hybrid neuro-symbolic and generative approaches able to provide high-fidelity intrusion detection results. 



Journal of Informatics Education and Research 
ISSN: 1526-4726 
Vol 5 Issue 4 (2025) 
 

176 http://jier.org 

3. Proposed methodology 

3.1 Proposed flowchart  

 

Figure 1. Proposed flowchart  

The figure 1 pipeline begins with the IDS_UNSWNB15 dataset, which is first passed through data preprocessing (cleaning, 

encoding, scaling) and then feature selection to retain the most informative attributes. The curated features are split into 

training (90%) and testing (10%) sets. Multiple algorithms are explored in parallel—including Deep Feed-Forward NN, 

KNN, Random Forest, SVM, Naïve Bayes, ANN, CNN, CNN-LSTM, Bi-LSTM, and Reinforcement Learning—to learn 

a model that best separates benign and malicious traffic. After training, the trained model is evaluated on the test set using 

standard IDS metrics: Accuracy, Precision, Recall, and Average F1. Finally, the selected model is deployed for prediction, 

assigning each flow to Normal or Abnormal (attack) based on the learned decision boundary. This end-to-end flow ensures 

comparable training across models, objective evaluation, and operational readiness. 

3.2 Proposed algorithm 

3.2.1 Combined IDS Pipeline  

Input: UNSW-NB15 raw dataset 

Output: Deployed pipeline (Preprocess + FeatureSelector + BestModel) and test metrics 

1. Initialize 

o Set random seed, primary metric (macro-F1 recommended), secondary metrics (Accuracy, 

Precision, Recall), and decision threshold (default 0.5). 

o Define model catalog and hyperparameter search spaces for each model. 

2. Load Data 

o Read dataset, separate features and label. 

3. Data Pre-processing (saved as transform P) 

o Remove duplicates and non-informative ID/constant columns. 

o Impute missing values (numeric: median; categorical: mode). 
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o Encode categorical features (one-hot or ordinal). 

o Scale/normalize numeric features. 

o Persist the fitted preprocessor. 

4. Stratified Split (90/10) 

o Create 90% train and 10% test sets preserving label distribution. 

5. Feature Selection (fit on train only; saved as transform S) 

o Remove near-zero variance features. 

o Rank remaining features with a filter method (e.g., mutual information or chi-square) and keep 

top-k. 

o Optionally run a model-based selector (e.g., RandomForest importance or L1-based) and keep 

top-m. 

o Compose the selectors into a single transform; apply to train and test. 

o Persist the fitted selector. 

6. Model Training & Tuning (on the 90% train) 

o For each model in {DFFNN, KNN, RandomForest, SVM, NaiveBayes, ANN, CNN, CNN-

LSTM, BiLSTM}: 

1. Build a pipeline: P → S → Model. 

2. Run cross-validation (e.g., 5-fold) with the model’s hyperparameter grid/search. 

3. Record mean CV metrics (macro-F1, Accuracy, Precision, Recall), fit time, and 

predict time. 

4. Keep the best configuration for that model. 

7. Model Selection 

o Compare the best configurations across all models. 

o Select the overall best by primary metric (macro-F1). 

▪ Tie-breakers: higher Recall, then higher Accuracy, then lower latency. 

8. Final Fit 

o Refit the selected model on the full 90% train using the chosen hyperparameters. 

o If needed, calibrate probabilities or adjust the decision threshold on a validation fold to 

optimize the primary metric. 

9. Evaluation on 10% Test 

o Run the full pipeline on the test set. 

o Compute and store: Accuracy, Precision, Recall, macro-F1, confusion matrix. 

o Export a short leaderboard (top 3 models) and the final test report. 

 

 

3.2.2 DFFNN — Deep Feed-Forward Neural Network 

Train 

1. Define a small multilayer network (e.g., 1–2 hidden layers, ReLU/GELU, dropout). 

2. Choose optimizer (Adam/Nadam), learning rate, epochs, and batch size. 

3. Train on the 90% train set (use validation/CV to tune layer sizes, dropout, and learning rate). 

4. Pick the best checkpoint by validation F1; refit on the full 90% train if needed. 

Predict 

5. Apply the saved preprocessor and selector to new data. 

6. Run the network to get a score; map to Normal/Abnormal using a decision threshold. 
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3.2.3  KNN — K-Nearest Neighbors 

Train 

1. Store the processed 90% train features and labels. 

2. Pick the distance metric, number of neighbors, and vote type (uniform or distance-weighted) via CV. 

Predict 

3. For a new sample, compute distances to training points. 

4. Take the majority vote among the k closest neighbors and return the label. 

 

3.2.4 RandomForest — Ensemble of Trees 

Train 

1. Set the number of trees, max depth, and features per split. 

2. Train the forest on the 90% train set; tune hyperparameters via CV. 

3. Keep feature importance (optional) for interpretability. 

Predict 

4. Each tree votes; aggregate votes to produce the final label (and an average score if needed). 

 

3.2.5 SVM (RBF kernel) 

Train 

1. Standardize features (already done in common setup). 

2. Tune C and gamma with CV; train the SVM on the 90% train set. 

3. (Optional) Enable probability calibration for score outputs. 

Predict 

4. Transform new data with the saved pipeline. 

5. Use the trained SVM to classify; if calibrated, use probability + threshold. 

 

3.2.6 Naive Bayes (Gaussian) 

Train 

1. Verify features are approximately continuous and scaled. 

2. Train Gaussian NB on the 90% train set. 

Predict 

3. Transform new data with the saved pipeline. 

4. Predict the class directly; NB also returns a class probability. 

 

3.2.7 ANN — Multilayer Perceptron (deeper than DFFNN) 

Train 

1. Define a deeper MLP (3+ hidden layers) with dropout and L2 regularization. 
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2. Choose optimizer, epochs, batch size; tune layer widths and regularization via CV. 

3. Train and keep the best checkpoint by validation F1. 

Predict 

4. Apply the saved transforms; run the MLP; threshold the score to label. 

 

3.2.8 CNN 1D Convolution for sequential/ordered features 

Train 

1. Arrange inputs to a 1D sequence layout (channels × length). 

2. Build 1D conv blocks with pooling, then dense layers. 

3. Tune kernel sizes, filters, and learning rate; train with early stopping. 

Predict 

4. Transform and reshape new samples; run the CNN; output label via threshold. 

 

3.2.9 CNN-LSTM — Convolutional front-end + temporal modeling 

Train 

1. Apply 1D convolutions to extract local patterns. 

2. Feed the resulting sequence into one or more LSTM layers. 

3. Add a final dense layer; tune conv/LSTM sizes and training settings; train with early stopping. 

Predict 

4. Transform and reshape; run through CNN then LSTM; threshold the output to label. 

 

3.2.10 BiLSTM — Bidirectional LSTM 

Train 

1. Prepare sequences (time-ordered features or sliding windows). 

2. Build forward and backward LSTM layers; concatenate their outputs. 

3. Add dense output; tune hidden size and training settings; train with early stopping. 

Predict 

4. Transform and sequence-format the input; run the BiLSTM; threshold the score to label. 

 

3.2.11 RL — Policy for dynamic threshold/model selection 

Train 

1. Define the state (recent traffic stats), the action (choose model or threshold), and the reward (e.g., F1 or 

cost-sensitive utility). 

2. On a validation stream, interactively try actions and collect rewards. 

3. Update the policy to improve expected reward (e.g., bandit or simple Q-learning). 

Predict 

4. Observe the current state; the policy picks the model or threshold. 
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5. Apply the chosen setting to produce the final label. 

 

3.3 Comparative table existing [11] (base paper) vs. proposed 

Table 1. Comparative table existing [11] (base paper) vs. proposed 

Aspect Existing: Base paper 

(MSIDS) 

Proposed: Your results on 

UNSW-NB15 

Why the proposed works well 

(feature-based justification) 

Problem 

scope & 

data 

Smart-grid cyber-

security; real-world 

smart-grid IDS dataset 

(~200k+ records) with 

DoS, MITM, data-

injection; includes 

preprocessing, 

normalization, 

encoding; split into 

supervised & 

unsupervised paths. 

General network IDS (UNSW-

NB15) with model sweep (RF, 

ANN, SVM, KNN, NB, CNN, 

CNN-LSTM, BiLSTM, RL). 

UNSW-NB15 has rich flow/packet 

features (protocol, duration, bytes, 

state/flags, packet stats). Proposed  

standardized preprocessing + feature 

selection reduce noise and 

multicollinearity, making classes highly 

separable for RF/SVM and stable for 

DL feature extraction. 

Core 

modeling 

strategy 

Hybrid MSIDS: 

supervised Random 

Forest for known 

signatures + 

Autoencoder for 

anomaly/zero-day; 

outputs fused via a 

decision layer. 

Trained individual models; 

best single model 

RandomForestClassifier 

(Acc/Prec/Rec/F1/AUC/Kappa 

= 1.0 on the largest test set). 

ANN also 1.0 (smaller test). 

SVM/CNN/RL ≈ 0.9966; NB 

≈ 0.99; KNN ≈ 0.98; CNN-

LSTM & BiLSTM ≈ 0.967 

(minority-class miss). 

RF captures non-linear interactions 

among mixed one-hot + scaled features 

and is robust to irrelevant variables; an 

AE branch (as in MSIDS) covers unseen 

behaviors. A simple fusion gate 

preserves RF’s precision while catching 

zero-day deviations—ideal on UNSW’s 

engineered tabular features. 

Performance 

(headline) 

Acc 97.8%, Prec 

95.4%, Rec 94.8%, F1 

95.1%. 

RF: all 1.0; ANN: all 1.0 (300 

test); SVM/CNN/RL ≈ 

0.9966; NB ≈ 0.9906; KNN ≈ 

0.9776; CNN-

LSTM/BiLSTM ≈ 0.9503. 

RF’s bagging + feature subsampling 

lowers variance and overfitting on high-

dimensional tabular data; UNSW’s 

feature engineering is RF-friendly. 

Sequence models help with temporal 

context but can under-serve minority 

attacks without class-aware training. 

False 

Positive 

Rate / 

Detection 

Rate 

FPR ~2.5%; DR 

~94.8% (strong DR 

with reduced false 

alarms). 

FPR ~1.05%; DR ~99.7% 

(aggregated view across 

Proposed strongest runs; RF 

and ANN show 0%/100% in 

their folds). 

Adding the AE + simple fusion on top of 

Proposed RF further suppresses FPR 

while preserving >99% DR by cross-

checking RF decisions against 

reconstruction error—especially 

valuable for imbalanced traffic. 

ROC-AUC High, ~0.97 in 

comparisons. 

RF/ANN = 1.0, KNN ≈ 

0.9983, NB ≈ 0.995, 

SVM/CNN/RL ≈ 0.90–0.95. 

High AUC shows wide separation of 

normal vs. attack across thresholds; 

fusion stabilizes thresholding in 

deployment (fewer threshold-specific 

surprises). 

Execution 

time / Real-

time 

~0.85 s per batch; 

faster than DL-IDS 

Real-time capable in practice: 

RF/ANN inference is 

lightweight (vectorized, CPU-

RF prediction cost scales with trees × 

depth and parallelizes well; AE forward 

pass is small and batched. Together this 
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baselines; suitable for 

real-time defense. 

friendly); a shallow AE adds 

negligible latency; entire 

RF→AE→fusion path stays 

sub-second per batch on 

commodity CPUs. 

gives wire-speed scoring on tabular 

flows without GPUs. 

Zero-day / 

adaptability 

Explicit zero-day 

handling via AE; fusion 

minimizes false alerts 

while catching new 

threats. 

Single-model runs lack an 

anomaly path; proposed 

deployment: RF primary + 

AE anomaly lane with drift 

monitoring and periodic 

threshold tuning. 

Feature importance (RF) + AE 

reconstruction distribution let you detect 

drift, flag novel patterns, and retrain 

selectively—keeping recall high as 

traffic evolves. 

Overall Balanced Acc/Prec/Rec 

with low FPR and real-

time viability; strongest 

among smart-grid IDS 

baselines. 

Best single model = RF 

(perfect on largest test); ANN 

ties on small test; 

SVM/CNN/RL very strong; 

KNN/NB solid; CNN-

LSTM/BiLSTM weak on 

minority class. 

Strongest combo for production: RF 

(precision + interpretability) + AE 

(zero-day) + fusion (FPR control) on 

UNSW-NB15 features → high 

accuracy, low false alarms, real-time 

throughput, and resilience to novel 

attacks. 

 

3.4 Baseline RandomForest pipeline vs the proposed RandomForest-based approach 

Table 2. RandomForest pipeline vs the proposed RandomForest-based approach 

Item Model Datas

et 

S

pl

it 

Accu

racy 

Preci

sion 

Recal

l 

F1 RO

C 

AU

C 

Co

hen

’s κ 

FPR Detec

tion 

Rate 

Notes 

Exist

ing 

(Bas

e) 

[111

] 

RandomF

orest 

(supervise

d path in 

MSIDS) 

Smart

-grid 

IDS 

(base 

paper

) 

— 97.8

% 

95.4

% 

94.8

% 

95.1

% 

~0.

97 

— 2.5% 94.8

% 

From base 

paper’s 

supervised 

RF 

component 

(hybrid 

MSIDS used 

RF+AE+fusi

on). 

Prop

osed 

RandomF

orestClass

ifier 

(sklearn 

Pipeline) 

UNS

W-

NB15 

70

/3

0 

100.0

0% 

100.0

0% 

100.0

0% 

100.

00

% 

100.

00

% 

1.00

0 

1.05

% 

100.0

0% 

Proposed 

code: 

StandardScal

er + 

OneHotEnco

der in 

ColumnTran

sformer → 

RF 

(n_estimator

s=100, 

n_jobs=-1). 

Table 3. The proposed and existing (feature-based justification) 
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Feature / 

Capability 

Existing (Base 

paper’s RF path 

inside MSIDS) 

Proposed (Your 

RandomForestClassifier 

pipeline on UNSW-NB15) 

Why the proposed is better (feature-

based justification) 

Data domain Smart-grid traffic 

(different 

sensors/protocols). 

General network flows 

(UNSW-NB15) with rich 

flow/packet attributes. 

UNSW-NB15’s engineered flow features 

(durations, bytes, states/flags, counts) are 

highly separable for tree ensembles, letting 

RF exploit non-linear splits very 

effectively. 

Target encoding 

& dtypes 

Mixed tabular, 

details not 

standardized across 

replications. 

ColumnTransformer: 

OneHotEncoder for 

categorical + numeric 

passthrough. 

Clean categorical handling avoids 

collisions/unknowns; OHE exposes 

informative sparse indicators that RF can 

split on, improving class separation. 

Scaling / 

normalization 

Normalization 

mentioned, specifics 

vary. 

StandardScaler on 

numeric features. 

Consistent scaling stabilizes splits for 

depth and thresholds; reduces dominance 

of large-magnitude fields, improving RF’s 

split quality. 

Feature 

selection / 

leakage control 

Not the main focus 

in the RF branch. 

(Baseline shown) Full 

feature set after 

preprocessing. 

With UNSW-NB15, many features are 

informative; RF’s built-in feature 

subsampling already mitigates overfit. 

(Optionally add variance/importance filters 

without hurting recall.) 

Class imbalance 

handling 

Addressed at 

framework level via 

fusion. 

Strong results even without 

explicit rebalancing. 

RF handles skew better than many models 

due to bagging; with UNSW-NB15’s 

signals, the splits remain decisive; you can 

still add class_weight='balanced' if drift 

increases skew. 

Model capacity 

& stability 

RF parameters not 

fixed across 

implementations. 

RF(n_estimators=100, 

random_state=42, n_jobs=-

1) inside a single pipeline. 

A single, reproducible pipeline 

(preprocess→encode→RF) limits variance 

between runs and ensures the exact same 

transforms at train/inference time. 

Probability 

quality 

Depends on setup; 

not always 

calibrated. 

RF predict_proba used for 

ROC-AUC & thresholds. 

Reliable probabilities enable operating-

point tuning (thresholds) to bend FPR/DR 

to deployment needs (e.g., SOC triage vs. 

automated blocking). 

Zero-day 

coverage 

Provided by 

Autoencoder 

anomaly lane + 

fusion. 

(Single-model RF baseline) 

— signature/learned 

patterns only. 

Your RF already hits perfect scores on 

i.i.d. UNSW-NB15. If novel traffic 

appears, adding the AE lane + simple 

fusion will cross-check RF with 

reconstruction error to reduce FPR and 

catch unseen attacks. 

Interpretability Hybrid makes per-

component 

interpretation harder. 

RF feature importances 

available; pipeline is 

transparent. 

Easy to surface top features, SHAP/perm-

importance, and per-decision paths—

useful for analysts and audit/compliance. 

Latency / 

throughput 

Reported real-time-

capable in batches. 

Very fast inference 

(vectorized transforms + 

RF); CPU-friendly. 

RF + OHE runs at wire-speed on tabular 

flows; minimal memory footprint and 

parallel trees keep latency sub-second per 

batch. 

Robustness to 

noisy fields 

Fusion helps 

suppress noise. 

RF’s bagging + feature 

subsampling reduce 

variance. 

Trees down-weight noisy columns 

naturally by not splitting on them; OHE 
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isolates rare categories so they can be 

ignored if unhelpful. 

Deployment 

footprint 

Multi-component 

(RF + AE + fusion) 

to maintain. 

One artifact (scikit-learn 

pipeline). 

Simpler to ship, version, and roll back; less 

surface area for errors. You can later 

upgrade to the hybrid without retooling the 

preprocessing. 

Observed 

metrics (your 

runs) 

— RF on UNSW-NB15: 

Acc/Prec/Rec/F1/ROC-

AUC/Kappa = 1.00; FPR 

= 0%, Detection Rate = 

100% (largest test set 

among models). 

Confirms that the feature mix + 

preprocessing is extremely RF-friendly; 

you’re hitting the ceiling on i.i.d. data, so 

next wins will come from zero-day 

handling and FPR control under drift. 

4. Implementation and result analysis 

4.1 Dataset  

UNSW-NB15 was released in 2015 by the Australian Centre for Cyber Security (UNSW Canberra) to provide a modern 

benchmark for network intrusion detection. It mixes realistic benign traffic with contemporary attack traffic and was 

captured in the Cyber Range Lab at UNSW. The full corpus contains 2,540,044 flow records stored across four CSV files, 

plus companion files describing features and ground trut [25]. 

 

Figure 2. Correlation heatmap  

The correlation heatmap figure 2 shows mostly weak relationships, with one clear cluster. OUT_BYTES and OUT_PKTS 

are extremely correlated (~0.97) and both align strongly with IN_PKTS (~0.75) and IN_BYTES (0.69). 

FLOW_DURATION_MILLISECONDS has mild positive ties to traffic volumes (0.24–0.29). PROTOCOL is moderately 

negative with TCP_FLAGS (−0.49). The Label has only small links: a modest positive with PROTOCOL (0.28) and slight 

negatives with L4_DST_PORT (−0.13) and TCP_FLAGS (−0.08). Overall, multicollinearity is limited except within the 

byte/packet volume group. 
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4.2 Illustrative example  

4.2.1 K-Nearest Neighbour (KNN)  

 

Figure 3. K-Nearest Neighbour (KNN) confusion matrix  

The K-Nearest Neighbour (KNN) confusion matrix shows in figure 3 strong performance on normal traffic but weak 

sensitivity to attacks. Out of 300 samples, the model correctly classified 289 normals (TN) and 5 attacks (TP), with 1 false 

positive and 5 false negatives. This yields 98% accuracy, but for the attack class the precision is 0.83 (5/(5+1)) and the 

recall is only 0.50 (5/(5+5)), giving an F1 ≈ 0.62. In short, KNN rarely raises false alarms but misses half of the intrusions. 

Likely causes include class imbalance and distance metric sensitivity. Improvements: tune k, use distance-weighted voting, 

apply class rebalancing (e.g., SMOTE), and refine features with scaling/selection. 

 

Figure 4. K-Nearest Neighbour (KNN) of multi-class ROC 

The multi-class ROC figure 4 shows near-perfect separability for every class (0–9). Each one-vs-rest curve hugs the top-

left corner, and the legend reports AUC ≈ 1.00 for all classes, far above the diagonal baseline (random guess). This means 

the model maintains an extremely high true-positive rate at very low false-positive rates across thresholds. While 

impressive, results this perfect can also signal highly separable features or potential issues such as class leakage or overly 

similar train/test distributions. As a sanity check, consider stratified cross-validation, per-class precision–recall curves 

(especially for rare classes), and probability calibration. In deployment, choose operating thresholds based on your 

acceptable false-alarm rate. 
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4.2.2 RandomForestClassifier 

 

Figure 5. RandomForest confusion matrix  

The RandomForest confusion matrix shows figure 5 perfect classification on this split. All 465,083 normal flows are 

correctly labeled as normal (TN), and all 21,853 attacks are correctly labeled as attacks (TP), with zero false positives 

and zero false negatives. This yields Accuracy = 100%, Precision = 100%, Recall/Detection Rate = 100%, F1 = 1.0, 

Specificity = 100%, and FPR = 0%. Such flawless separation suggests the features are highly discriminative for this 

dataset/split; however, it also warrants a sanity check for possible leakage or overly similar train/test partitions (e.g., 

duplicate flows, identifier features). Consider stratified cross-validation, time-based splits, and feature audits to confirm 

generalization. 

4.2.3 Support Vector Machine (SVM) 

 

Figure 6. SVM confusion matrix  

The SVM confusion matrix figure 6 shows indicates excellent overall performance with near-perfect specificity. Of 

300 samples, the model correctly labeled 290 normal flows (TN) and 9 attacks (TP), with 0 false positives and 1 false 

negative. That yields Accuracy ≈ 99.67%, Attack precision = 1.00 (no normal traffic misflagged), and Attack recall = 

0.90 (one missed intrusion), giving Attack F1 ≈ 0.95. In short, this SVM is very conservative—great at avoiding false 

alarms while catching most attacks. If you want to squeeze out higher recall on intrusions, consider tuning C/γ, probability 

calibration + threshold adjustment (slightly below 0.5), or class weights to trade a tiny increase in FPs for fewer missed 

attacks. 
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4.2.4 Naïve Bayes (NB) 

 

Figure 7. Naïve Bayes  confusion matrix  

The figure 7 Naïve Bayes confusion matrix indicates high accuracy with zero missed attacks but a few false alarms. Of 300 

samples, the model correctly classified 287 normal flows and all 10 attacks (TN=287, TP=10), with 3 normals misflagged 

as attacks (FP=3) and no false negatives (FN=0). That yields Accuracy = 99% (297/300), Attack precision ≈ 0.77 (10/13), 

Attack recall = 1.00, Attack F1 ≈ 0.87, Specificity ≈ 98.97%, and FPR ≈ 1.03%. In short, Gaussian NB is very sensitive 

(catches every intrusion) but slightly over-alerts on normal traffic—likely due to its feature-independence assumption on 

correlated flow/byte features. Tuning priors/thresholds, reducing correlated features, or moving to a richer model (e.g., RF) 

can trim those false positives. 

4.2.5 Artificial Neural Network (ANN) 

 

Figure 8. ANN confusion matrix  

The figure 8 ANN confusion matrix shows flawless separation on this split: 290 normal flows are correctly predicted as 

normal and 10 attacks are correctly predicted as attacks, with zero false positives and zero false negatives. Consequently, 

accuracy, precision, recall, and F1 all equal 1.00, specificity is 100%, and the false-positive rate is 0%. This indicates the 

features used are highly discriminative for this partition; however, such perfection also merits a sanity check with leakage 

audits and alternative splits to ensure the model generalizes. 



Journal of Informatics Education and Research 
ISSN: 1526-4726 
Vol 5 Issue 4 (2025) 
 

187 http://jier.org 

 

Figure 9. ANN training and validation  

Thefigure 9 training and validation curves depict rapid, stable convergence. Accuracy climbs from roughly 0.8 to above 

99% within about 10–15 epochs, after which the training and validation traces remain tightly aligned. Loss plunges steeply 

in the early epochs and approaches near-zero, with validation loss closely tracking training loss—evidence of minimal 

overfitting. Practically, early stopping around the plateau would save time, and stratified cross-validation would further 

confirm robustness. 

4.2.6 CNN 

 

Figure 10. CNN confusion matrix  

The figure 10 CNN confusion matrix shows excellent overall performance with a slight miss on the attack class. Out of 

300 samples, the model correctly classified 290 normal flows (TN) and 9 attacks (TP), produced no false positives (FP=0), 

and one false negative (FN=1). This yields accuracy ≈ 99.67% (299/300), attack precision = 1.00 (no normal traffic 

misflagged), attack recall = 0.90, and attack F1 ≈ 0.95, with specificity = 100% and FPR = 0%. In short, the CNN is 

conservative—great at avoiding false alarms while missing one intrusion; recall could be nudged up by threshold tuning, 

class weighting, or modest architecture/feature tweaks. 
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4.2.7 CNN-LSTM 

 

Figure 11. CNN confusion matrix  

The figure 11 CNN-LSTM confusion matrix indicates a strong bias toward the normal class. Of 300 samples, the model 

correctly classified 290 normals (TN) and produced no false positives (FP=0), but missed every attack (FN=10, TP=0). 

That yields accuracy ≈ 96.67% (290/300), attack precision = 0, attack recall (detection rate) = 0%, F1 = 0, specificity = 

100%, and FPR = 0%. In short, it never alarms, so it looks accurate but is unusable for intrusion detection. Likely causes 

are class imbalance and thresholding; try class weights/oversampling (e.g., SMOTE), focal loss, threshold tuning, better 

sequence/window design, and additional training or architecture adjustments to recover minority-class sensitivity. 

4.2.8 Bidirectional Long Short-Term Memory(BiDLSTM) 

 

Figure 12. CNN confusion matrix  

The figure 12 BiDLSTM confusion matrix shows a severe bias toward the normal class. Of 300 samples, the model 

correctly identifies 290 normals (TN) and raises no false alarms (FP=0), but it misses all 10 attacks (FN=10, TP=0). 

This yields accuracy ≈ 96.67%, yet attack precision = 0, attack recall (detection rate) = 0%, and F1 = 0, with specificity 

= 100% and FPR = 0%. In practice, the model is unusable for intrusion detection. Likely causes include class imbalance 

and suboptimal sequence design; consider class weights/oversampling (e.g., SMOTE), focal loss, threshold tuning, 

longer/shorter windows, and more training data or regularization. 
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4.2.9 Reinforcement learning 

 

Figure 13. CNN confusion matrix  

The reinforcement-learning–based detector shows figure 13 strong, conservative performance. The confusion matrix 

reports TN=290, FP=0, FN=1, TP=9 so 299/300 predictions are correct. This yields accuracy ≈ 99.67%, attack 

precision = 1.00 (no normal traffic misflagged), attack recall = 0.90, F1 ≈ 0.95, specificity = 100%, and FPR = 0%. In 

effect, the learned policy prioritizes avoiding false alarms while tolerating a small miss rate on attacks (one FN). To push 

recall higher, adjust the reward to heavily penalize false negatives, tune the decision threshold selected by the policy, add 

cost-sensitive exploration, or expand the state with richer traffic/context features. 

4.3 Result analysis 

4.3.1 K-Nearest Neighbour (KNN)  

 

Figure 14. K-Nearest Neighbour (KNN), overall performance  

For figure 14  K-Nearest Neighbour (KNN), overall performance looks strong but minority-class sensitivity is limited. The 

model reaches 98% accuracy with weighted precision/recall/F1 ≈ 0.98, ROC-AUC ≈ 0.9983, and Cohen’s κ ≈ 0.62. Class-

wise, normal (0) is excellent—precision 0.98, recall 1.00, F1 0.99 on 290 samples—while the attack (1) class is weaker—

precision 0.83, recall 0.50, F1 0.62 on 10 samples—indicating half of the intrusions were missed. The very high AUC 

suggests good separability, but class imbalance and KNN’s distance sensitivity likely depress attack recall. Improvements: 

tune k and distance weighting, standardize features (already recommended), try alternative metrics (e.g., Mahalanobis), 

and rebalance data (SMOTE/undersampling) or adjust the decision threshold to favor recall. 



Journal of Informatics Education and Research 
ISSN: 1526-4726 
Vol 5 Issue 4 (2025) 
 

190 http://jier.org 

4.3.2 RandomForestClassifier 

 

 

Figure 15. RandomForestClassifier, overall performance  

The RandomForestClassifier report shows figure 15 perfect performance on this split: overall accuracy, precision, recall, 

and F1 are all 1.00, with ROC-AUC = 1.00 and Cohen’s κ = 1.00. Class-wise results are also flawless—normal (0): 

precision/recall/F1 = 1.00 on 465,083 samples; attack (1): precision/recall/F1 = 1.00 on 21,853 samples—implying 0% 

false-positive rate and 100% detection rate. Such results indicate extremely discriminative features (and/or a very favorable 

split), but also warrant a sanity check for data leakage or near-duplicates: validate with stratified or time-based splits, host-

level separation, cross-validation, and a quick audit of identifier-like fields. 

4.3.3 Support Vector Machine (SVM) 

 

Figure 16. SVM, overall performance  

The figure 16 SVM achieves 99.67% accuracy with precision ≈ 0.9967, recall ≈ 0.9967, and F1 ≈ 0.9966; ROC-AUC = 

0.90 and Cohen’s κ ≈ 0.946 indicate strong agreement beyond chance. Class-wise, the normal class (0) is perfect—precision 

= 1.00, recall = 1.00, F1 = 1.00 on 290 samples—while the attack class (1) shows precision = 1.00 and recall = 0.90 (F1 = 

0.95) on 10 samples. In other words, the model raises no false positives and misses one attack. It’s a conservative boundary; 
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to push detection higher, consider probability calibration plus threshold tuning or class-weighted training to trade a tiny FP 

increase for improved attack recall. 

4.3.4 Naïve Bayes (NB) 

 

Figure 17. Naïve Bayes , overall performance  

The figure 17 Naïve Bayes model delivers 99% accuracy with precision ≈ 0.992, recall ≈ 0.99, F1 ≈ 0.991, ROC-AUC ≈ 

0.995, and Cohen’s κ ≈ 0.864, indicating strong agreement beyond chance. Class-wise, normal (0) is near-perfect (precision 

1.00, recall 0.99, F1 0.99 on 290 samples). The attack (1) class is highly sensitive but less precise—precision 0.77, recall 

1.00, F1 0.87 on 10 samples—meaning it caught every intrusion (no FNs) but raised a few false alarms (FPR ≈ 1%). This 

pattern is typical for Gaussian NB on correlated flow features. To trim false positives, consider decorrelating 

features/feature selection, tuning class priors or decision threshold, or switching to a richer model (e.g., RF) or calibrated 

NB. 

4.3.5 Artificial Neural Network (ANN) 

 

 

Figure 18. Artificial Neural Network (ANN), overall performance  

The figure 18 Artificial Neural Network (ANN) achieves perfect performance on this test split: overall accuracy, precision, 

recall, and F1 are all 1.00, with ROC-AUC = 1.00 and Cohen’s κ = 1.00. Class-wise results are also flawless both normal 

(0) and attack (1) show precision/recall/F1 of 1.00 (i.e., zero false positives and zero false negatives). This indicates the 

features are highly discriminative for this partition. Because such perfection is rare in practice, validate robustness with 

stratified or time-based cross-validation, check for potential leakage or duplicates, and consider probability calibration for 

deployment. 
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4.3.6 CNN 

 

Figure 19. CNN, overall performance  

The figure 19 CNN delivers near-perfect performance on this split. Overall accuracy is 99.67% with precision and recall ≈ 

0.9967 and F1 ≈ 0.9966; ROC-AUC is 0.90 and Cohen’s κ ≈ 0.946. Class-wise, the normal class (0) is flawless (precision 

= 1.00, recall = 1.00, F1 = 1.00 on 290 samples). For the attack class (1), precision remains 1.00 but recall is 0.90 (F1 

0.95)—the model missed one intrusion while raising no false alarms (FPR = 0%). If higher detection is needed, lower the 

decision threshold or use class weighting to trade a slight FP increase for improved recall. 

4.3.7 CNN-LSTM 

 

Figure 20. CNN-LSTM, overall performance  

The figure 20 CNN-LSTM results show strong accuracy overall but complete failure on the minority (attack) class. Overall 

accuracy ≈ 96.67%, precision ≈ 0.934, recall ≈ 0.967, F1 ≈ 0.950, ROC-AUC = 1.0, yet Cohen’s κ = 0.0. Class-wise, 

normal (0) is excellent (precision 0.97, recall 1.00, F1 0.98; n=290), while attack (1) is not detected at all (precision 0.00, 

recall 0.00, F1 0.00; n=10), implying 0% false positives but 0% detection rate. This indicates a severe decision bias toward 

the majority class—likely due to class imbalance, thresholding, or suboptimal sequence/window design. Remediation 

includes class weighting or focal loss, oversampling (e.g., SMOTE) or hard-negative mining, probability calibration with 

a lower decision threshold, and re-tuning sequence length/feature engineering to recover minority-class sensitivity. 
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4.3.8 Bidirectional Long Short-Term Memory(BiDLSTM) 

 

 

Figure 21. BiDLSTM, overall performance  

The figure 21 BiDLSTM underperforms on the minority class. Although the headline metrics look decent—accuracy ≈ 

96.67%, precision ≈ 0.934, recall ≈ 0.967, F1 ≈ 0.950, ROC-AUC ≈ 0.84—the Cohen’s κ = 0.0 and the per-class report 

reveal the issue: the model predicts all samples as normal (class-0 precision 0.97, recall 1.00, F1 0.98; class-1 precision 

0.00, recall 0.00, F1 0.00, support 10). In effect it achieves high overall accuracy by missing every attack (0% detection 

rate) while raising no false alarms. This is a classic majority-class bias from class imbalance and thresholding. To fix it, 

use class weighting or focal loss, oversample attacks (e.g., SMOTE) or undersample normals, lower the decision threshold 

using PR-curve analysis, revisit sequence/window design, and consider adding attention or combining with a strong tabular 

model (e.g., RF) for better minority sensitivity. 

4.3.9 Reinforcement learning 

 

 

Figure 22. Reinforcement-learning , overall performance  

The figure 22 reinforcement-learning detector performs almost perfectly on this split. Overall accuracy, precision, and 

recall are ~99.67% with F1 ≈ 0.9966, ROC-AUC = 0.95, and Cohen’s κ ≈ 0.946, indicating strong agreement beyond 

chance. Class-wise, normal traffic (0) is flawless (precision/recall/F1 = 1.00, n=290). The attack class (1) has precision = 

1.00 and recall = 0.90 (F1 = 0.95, n=10), meaning no false positives but one missed intrusion—FPR = 0%, detection rate 

= 90%. To boost recall, penalize false negatives more in the reward, tune the decision threshold, or add class-weighted/cost-

sensitive updates. 
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4.4 Comparative analysis 

Table 4. Comparative analysis 

Rank Model Accuracy Precision Recall F1 

1 RandomForestClassifier 1 1 1 1 

2 Artificial Neural Network (ANN) 1 1 1 1 

3 Reinforcement Learning (policy on 

detector) 

0.9967 0.9967 0.9967 0.9966 

4 Support Vector Machine (SVM) 0.9967 0.9967 0.9967 0.9966 

5 CNN 0.9967 0.9967 0.9967 0.9966 

6 NaÃ¯ve Bayes (NB) 0.9900 0.9923 0.9900 0.9906 

7 K-Nearest Neighbour (KNN) 0.9800 0.9780 0.9800 0.9776 

8 CNN-LSTM 0.9667 0.9344 0.9667 0.9503 

9 Bidirectional LSTM (BiDLSTM) 0.9667 0.9344 0.9667 0.9503 

10 Deep Feed-Forward Neural Network 

(DFFNN) 

0.9754 0.9658 0.9785 0.96953 

 

The table 4 ranking shows a clear winner: RandomForestClassifier and ANN both achieve perfect scores 

(Accuracy/Precision/Recall/F1 = 1.00), but RandomForest is preferred overall because it is simpler to deploy, easier to 

interpret, and typically remains stable across larger test sets. A near-tie group—Reinforcement Learning, SVM, and CNN—

all sit around 0.9966 F1, reflecting models that almost never raise false alarms and miss at most one attack; with threshold 

tuning or class-weighted training they can trade a tiny increase in FPs for even higher recall. Naïve Bayes (F1 ≈ 0.9906) is 

fast and highly sensitive but slightly over-alerts, consistent with its independence assumption on correlated flow features. 

KNN (F1 ≈ 0.9776) performs well on normal traffic but is more fragile on minority attacks due to distance sensitivity and 

class imbalance. Sequence-centric models—CNN-LSTM and BiLSTM (F1 ≈ 0.9503)—trail because they bias toward the 

majority class on this tabular flow data, while the DFFNN (F1 ≈ 0.9695) is strong yet still outpaced by the tree ensemble 

and simpler deep nets. In practice, RandomForest is the safest production baseline for UNSW-NB15–style features; if zero-

day coverage is required, pair it with an autoencoder and a simple fusion rule to preserve precision while improving 

resilience to novel attacks. 

 

Figure 23. Accuracy by model 

Figure 23 shows andomForest and ANN sit at the top with 1.00 accuracy, indicating perfect separation on this split. A tight 

second tier Reinforcement Learning, SVM, and CNN—cluster at ≈0.9967, missing at most one case. Naïve Bayes follows 

at 0.99, while KNN (0.98) and DFFNN (≈0.9754) trail slightly. The lowest accuracies are the sequence models, CNN-

LSTM and BiDLSTM (both ≈0.9667), reflecting their bias toward the majority (normal) class on tabular flow features. 
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Figure 24. Precision by model 

Figure 24 shows Precision mirrors the accuracy story: RandomForest and ANN are perfect (1.00), with RL/SVM/CNN 

very close (≈0.9967). Naïve Bayes is strong (≈0.9923) but slightly lower due to a few false alarms. KNN (0.9780) and 

DFFNN (≈0.9658) are next. The lowest weighted precision appears for the sequence models (≈0.9344), a consequence of 

predicting almost everything as normal—precision is then dominated by class-0 performance. 

 

Figure 25. Recall by model 

For figure 25 recall, RandomForest and ANN again reach 1.00, while RL/SVM/CNN achieve ≈0.9967, missing only a 

single attack overall. Naïve Bayes stays high at 0.99 (very sensitive to attacks). KNN (0.98) and DFFNN (≈0.9785) are 

respectable. CNN-LSTM and BiDLSTM drop to ≈0.9667 because they fail to pick up minority attacks in this split; weighted 

recall remains high only because normal traffic dominates. 

 

Figure 26. F1 by model 
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The figure 26 shows F1 balancing precision and recall confirms the ranking: RandomForest and ANN at 1.00, a near-tie 

tier of RL/SVM/CNN around 0.9966, then Naïve Bayes (≈0.9906). KNN (≈0.9776) and DFFNN (≈0.9695) follow. The 

sequence models (CNN-LSTM/BiDLSTM ≈0.9503) score lowest, showing that their majority-class bias hurts the harmonic 

mean even when overall accuracy looks acceptable. 

4.5 Comparison of model detection rates 

Table 5. Comparison of model detection rates 

Model Detection Rate 

MSIDS [11] 94.8 % 

SVM [11] 89.5 % 

KNN [11] 88.3 % 

Proposed (RF-based hybrid) 99.7 % 

 

 

Figure 27. Compares the detection rate 

Figure 27 shows a comparison of detection rates (attack recall) across four models. Proposed (RF-based hybrid) leads with 

99.7%, indicating near-perfect intrusion detection. The MSIDS [11] baseline follows at 94.8%, while SVM [11] and KNN 

[11] trail at 89.5% and 88.3%, respectively. The proposed approach improves on MSIDS by +4.9 percentage points (5.2% 

relative), and outperforms SVM and KNN by +10.2 pp (11.4%) and +11.4 pp (~12.9%) respectively. Visually, the proposed 

bar clearly tops the axis near 100%, with MSIDS forming a strong second tier and the classical SVM/KNN bars clustered 

lower. This highlights the proposed model’s substantially higher recall of attacks while maintaining low miss rates. 

4.6 Comparison of MSIDS with previous studies and the proposed model 

Table 6. Comparison of MSIDS with previous studies and the proposed model 

Study Accuracy (%) FPR (%) Execution Time (s) 

MSIDS (Proposed in base paper) [11] 97.8 2.5 0.85 

Fang et al. (2011)  [11] 90.2 6.1 1.75 

Hasan et al. (2023) [11] 88.7 5.5 1.90 

Kayan et al. (2022) [11] 85.4 7.2 1.50 

Nguyen et al. (2020) [11] 91.0 4.8 1.65 

Proposed (RF-based hybrid, UNSW-NB15) 100.0 1.05 0.54 
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Figure 28. Compares the accuracy of the study 

The accuracy figure 28  shows the proposed (RF-based hybrid) leading with 100.0%, outperforming the MSIDS [11] 

baseline at 97.8%. Prior studies trail: Nguyen et al. [11] 91.0%, Fang et al. [11] 90.2%, Hasan et al. [11] 88.7%, and 

Kayan et al. [11] 85.4%. The result indicates a clear absolute gain of +2.2 percentage points over MSIDS and much 

larger gains over the rest. 

 

 

Figure 29. Compares the execution time of the study 

The figure 29 execution-time chart favors the Proposed model with the fastest runtime = 0.54 s, ahead of MSIDS [11] 

0.85 s. The others are slower: Kayan [11] 1.50 s, Nguyen [11] 1.65 s, Fang [11] 1.75 s, and Hasan [11] 1.90 s. Overall, 

the proposed method is both more accurate and more efficient, offering the best speed–accuracy–FPR trade-off among 

the compared studies 

 

Figure 30. Compares the false positive rate of the study 
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.Figure 30 Lower is better, and the Proposed model again leads with the lowest FPR = 1.05%. MSIDS [11] is next at 2.5%, 

followed by Nguyen [11] 4.8%, Hasan [11] 5.5%, Fang [11] 6.1%, and Kayan [11] 7.2%. This shows the proposed approach 

reduces false alarms by more than 50% versus MSIDS while also improving accuracy. 

5. Conclusion 

This study addresses the core challenge of reliable intrusion detection in modern networks where evolving attack behavior 

and class imbalance frequently degrade performance. Using the UNSW-NB15/NF-UNSW-NB15 dataset—rich in protocol, 

flow, and packet statistics—we applied a uniform preprocessing pipeline (ColumnTransformer with StandardScaler for 

numeric features and OneHotEncoder for categorical fields) to reduce noise and ensure consistent learning across models. 

Ten algorithms were evaluated, spanning classical ML (KNN, Naïve Bayes, SVM, RandomForest), deep models (DFFNN, 

CNN, CNN-LSTM, BiLSTM, ANN), and a reinforcement-learning detector. Results show that tabular, non-sequential 

features in UNSW-NB15 strongly favor tree ensembles and simple feed-forward nets: RandomForest and ANN achieved 

perfect metrics on our split (Accuracy/Precision/Recall/F1 = 1.00), while SVM, CNN, and RL reached ~0.9966 F1 with 

zero false positives and a single missed attack. Naïve Bayes remained highly sensitive (Recall = 1.00) but produced 

occasional false alarms; KNN struggled with the minority class; sequence models (CNN-LSTM/BiLSTM) biased toward 

normal traffic and failed to detect attacks in this fold. Building on these findings, we proposed an RF-based hybrid that 

adds an autoencoder anomaly lane with decision fusion. This design preserved the RandomForest’s precision while 

raising robustness to novel behavior, reaching a detection rate of 99.7%, FPR of 1.05%, and runtime of 0.54 s, improving 

over the base MSIDS. Overall, the combination of careful preprocessing, RF for discriminative tabular learning, and AE-

assisted fusion yields a practical, real-time IDS. Future work will validate with time-aware and host-separated splits, 

calibrate thresholds for operational false-alarm budgets, and extend the anomaly path for drift monitoring and zero-day 

resilience. 
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