
Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

173 http://jier.org

High-Accuracy Intrusion Detection System using Deep Learning Ensembles and

Reinforcement Learning on the NF-UNSW-NB15 Dataset

Fiona Lawrence1, Dr. Rajesh kumar Nigam2

1Research Scholar, Assistant Professor, Department of Computer Science and Engineering, Oriental University, Indore,

India

2Associate Professor, Department of Computer Science and Engineering, Oriental University, Indore, India

Corresponding author : Fiona Lawrence ,fionalawrence2908@gmail.com

Abstract : Modern networks face fast-evolving attacks and strict false-alarm budgets, making accurate, adaptive intrusion

detection essential. This work targets that gap with a deep-learning–driven IDS tailored to flow data, focusing on the NF-

UNSW-NB15 dataset. We first motivate the problem: single classifiers or static thresholds often miss minority attacks or

trigger excessive alerts under shift and imbalance. Our method couples a deep learning ensemble with a reinforcement

learning (RL) controller. Tabular flows are preprocessed via scaling and one-hot encoding, then fed to diverse base learners

(ANN, CNN, BiLSTM). Their calibrated probabilities are stacked by a lightweight meta-network to form a robust DL

ensemble. An RL policy operates on batch-level traffic context (class priors, score dispersion, recent errors) to select the

operating threshold and, when useful, down-weight a weak base model—directly optimizing a cost-sensitive reward that

prioritizes recall while controlling false positives. We add drift checks and early-stopping to ensure stable, efficient

inference. Using NF-UNSW-NB15 with stratified splits and cross-validation, the proposed system achieves 99.8%

accuracy, 0.998 F1, a 99.7% detection rate (attack recall), and a 1.05% false positive rate, with 0.54 s batch-level runtime

on CPU. Compared to the MSIDS baseline (97.8% accuracy, 2.5% FPR, 94.8% detection, 0.85 s), this yields +2.0

percentage points accuracy, a 58% FPR reduction, +4.9 points detection-rate gain (~5.2% relative), and 36% faster

execution. These results indicate a practical, high-accuracy IDS that is both fast and resilient to evolving traffic.

Keywords : Intrusion Detection System, Deep Learning, Ensemble Learning, Reinforcement Learning, NF-UNSW-NB15,

Network Security, Anomaly Detection.

1. Introduction

Modern enterprise networks generate massive volumes of heterogeneous traffic while facing fast-evolving, low-prevalence

attacks. Conventional intrusion detection systems (IDS)—whether signature based or single supervised models—often

struggle under these conditions. They either miss minority attacks (high false negatives) or overwhelm analysts with false

alarms when thresholds are tightened. Class imbalance, non-stationary distributions (concept drift), and the need for near-

real-time inference further complicate deployment. To address these challenges, we target the NF-UNSW-NB15 dataset, a

NetFlow-style reformulation of UNSW-NB15 containing rich flow, protocol, and packet-level attributes suited to tabular

machine learning and deep models alike.

This work proposes a high-accuracy IDS that combines deep learning ensembles with reinforcement learning (RL) control.

After a standardized preprocessing pipeline (one-hot encoding for categorical fields and scaling for numerics via a

ColumnTransformer), we train diverse base learners—feed-forward ANN, CNN over ordered feature channels, and

BiLSTM for temporal proxies. Their calibrated probabilities are stacked by a lightweight meta-network, yielding a robust

deep ensemble that benefits from complementary inductive biases. An RL policy observes batch-level context (class priors,

score dispersion, recent errors) and dynamically selects the operating threshold and optional down-weighting of weak base

models. The reward is cost-sensitive, directly penalizing missed attacks while constraining false positives. Practical

safeguards—early stopping, drift checks, and probability calibration—promote stability and low latency.

On NF-UNSW-NB15, the proposed system achieves 99.8% accuracy, 0.998 F1, a 99.7% detection rate (attack recall), and

a 1.05% false positive rate, with 0.54 s batch-level CPU runtime. Relative to a strong MSIDS baseline reported in prior

work (97.8% accuracy, 2.5% FPR, 94.8% detection, 0.85 s), our approach delivers +2.0 percentage-point accuracy, a 58%

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

174 http://jier.org

reduction in FPR, +4.9 points in detection rate (~5.2% relative), and 36% faster execution—indicating a practical path to

high-recall, low-noise IDS at production speeds.

Key contributions

• DL ensemble for tabular network flows: A calibrated stacking architecture (ANN/CNN/BiLSTM → meta-

network) tailored to NF-UNSW-NB15’s heterogeneous features.

• RL-guided decision control: A lightweight policy that adapts thresholds and base-model weights to traffic context

using a cost-sensitive reward, improving recall with minimal false alarms.

• Deployment-oriented pipeline: Reproducible preprocessing, early stopping, and drift monitoring that sustain sub-

second CPU inference.

• Comprehensive evaluation: Stratified splits and cross-validated experiments demonstrating state-of-the-art

accuracy, markedly lower FPR, higher detection rate, and faster runtime than the MSIDS baseline.

2. Literature Review

Artificial Intelligence (AI)-enabled Intrusion Detection Systems (IDS) constitute a building block of modern cybersecurity

by using machine learning and deep learning techniques to identify anomalies in the high-volume traffic while minimising

false positives, and reconfiguring themselves to adapt to evolving attack surfaces and legal requirements, yet they struggle

with issues such as data-quality requirement, training-data scale, and false-negative risk driving needs for tighter integration

with threat intelligence feeds, response automation, and zero-day immunity [1]; within health technology domains like

Internet of Medical Things (IoMT), these stakes are heightened because constrained medical devices are poorly

authenticated enlarging the attack surface which lead an organised treatment on how key elements of AI-based IDS design

datasets security considerations detection workflows evaluation metrics open challenges converge in a research roadmap

safeguarding clinical data and devices [2]; across IoT more broadly recent systematic work structures prevalent attacks

against available IDS architectures comparing centralized distributed federated training paradigms as well as

cloud/fog/edge deployments—tying them back to dataset choices together with validation metrics highlight persisting real-

world reliability lifecycle challenges [3]; complimentary surveys covering both traditional advanced IDS technologies

position these AI strategies alongside scalability performance concerns false/alarm reduction claims on cloud networks

virtualised manufacturing environments heterogeneous testbeds introduce emerging facilitators such as blockchain to a

decentralised confidence procedure [4]; when looking ahead large language models (LLMs) stand ready for reshaping

Network IDS providing “intelligent” ML/DL pipelines enriched by “cognitive” capabilities context reconciliation beyond

structured/unstructured telemetry explainable reasoning controller-style co-ordination orchestrating tools proactive

discovery automated reaction surfacing novel non-functional aspects reliability trust operational alignment carcasses most

contentious points[5].

Deep learning has been the current trend in intrusion detection across next-generation networks particularly 6G to cater for

smart variants of high-dimensional traffic and complex attacks which rapidly learn and evolve, as verified through using

LSTM-RNNs optimized with NADAM optimizer in capturing temporal attack patterns, resolving vanishing gradients,

thereby out-performing RMSprop, Adagrad and Adam across all reported evaluations (efficiency = 9.45%, FAR = 9.85%),

hence complementing imminent blockchain-based spectrum/data-sharing defenses [6]. The proliferation of IoT/IoMT

escalates the number of areas for attackers to exploit, overburdening rule- or statistics-based IDS; surveys show deep

learning makes it possible for hierarchical representation learning to be performed in real-time anomaly detection and

points out restrictions (e. g., device heterogeneity, constraints on resources and dynamics topology) as well as demanding

continued datasets/metrics so generalization/operational efficacy can be evaluated [7], [9]. A focused systematic review by

[8], in the years 2020–2024, further bifurcates research across deep learning, reinforcement learning and ensemble learning

approaches (both from a training perspective as well as upon deployment regimes) as applied to the intrusion detection

problem, laying out advantages (adaptable or robust) against disadvantages (the heavy reliance on data or stability issues

or qualitative progress over interpretability), hence specifing improvements due to practical needs and still pursuing gaps

of literature for resilient IDS design. As a foundation to replicate such improvements, the Gotham testbed supplies an IoT

dataset instantiated in the wild with records from 78 emulated devices with traffic data and attacks sampled (e.g. DoS,

Telnet brute force, scanning, CoAP amplification, C&C) and collected as PCAP on per-device collection gateway-interface

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

175 http://jier.org

(MQTT/CoAP/RTSP), then process using Tshark to labeled CSV providing sufficient context for robust training-validation

of state-of-the-art IDS pipelines in authentic large-scale environment at-scale scenarios [10].

Industry-4. 0 energy systems underscores need for scalable combination of supervised and unsupervised learning in IDS;

in smart renewable grids, AI-augmented multi-stage approach (e.g. Random Forest+autoencoders) reaches ~97.8%

detection with fewer FPs, shows hybrid pipelines can secure critical infrastructure in real time [11]; Internet of Drones

(IoD) introduces resource-constrained, dynamic aerial networks where a SLR via PRISMA method (2014–2024; 62

studies) catalogs IDS types, algorithms; datasets; attack taxonomies; tooling while other findings indicate high false-

positive rates and incompleteness against evolving threats [12]; comprehensive security framework across 5G towards 6G

integrates top ML techniques into I^2P^2 detections against Macrophage mult viruses architectural vulnerabilities privacy-

preserving opportuntistic addition to emergence regulation as e.u ai act culminating an improved Wireless Intrusion

Detection Algorithm show promising results, highlighting the gains made [13] Metaverse-centered

surveys develop taxonomy of NIDS-designs from network-layer perspective between '21-'24 also identifies knowledge

gaps- explainability/ trustworthiness/ scalability/robustness essential complexities for on-the-fly resistances at immersive

contexts[14]; larger IoT overviews map existing ML/DL-based IDS challenges/methods/datasets problemses

scale/resource limits/data-prvanaabilities mapping vis-a-vis design imperative guides substantiate formidably-efficiently-

intelligently-dyoable protections constructivities[15]; systematic review federated learning(2020–2024;)studies indicates

FL’s promise under decentralized,rugged privacy-speculative state personalized IDS w/o raw-data sharing limitations

dataset diversity heterogeneity aggregational robustive research soft-spots seminal research cues community

frontiersweetings[16].

These models are assessed on a variety of datasets (KDD Cup, NSL-KDD, UNSW-NB15 and Kyoto) for smart grids, 5G

& IoT botnets.' 'Classical ML/SATS techniques include SVMs, RF's and Gradient Boosting along with relational

comparison methods such as Decision Trees (DT), Naive Bayes (NB), K-Nearest Neighbors/ Brute force and ensembled

methods.' 'This paper takes a look at Domain-Specific detection of ML/DL approaches across Smart Grid based IDS [17].

To this end, a smart-grid pipeline that combines temporal modeling (RNN) with margin-based classification (SVC) through

preprocess–detect–classify stages provides real-time identification of known and especially zero-day attacks at ~100%

average accuracy on well-established datasets like the UNSW-NB15 and BoT-IoT datasets [18], demonstrating resource-

friendly precision with minimal false positives for operational usage. In 5G networks, the analysis on authenticated

incoming data the dataset i.e., 5G-NIDD dataset shows that KNN scored highest in terms of accuracy/ROC-AUC and

Voting ensemble performed best in precision/F1 followed by DT/Bagging/Extra Trees lead to recall and AdaBoost

performs poor overall, as well as pointing out the potential of DL and deep transfer learning (BiLSTM, CNN, ResNet,

Inception) for sparse piece-wise encrypted flows such evolving traffic like e.g., network-slicing DDoS accompanied by a

requirement for larger labeled corpora and adaptive defenses is made [19]. In complement, IoT botnet studies of DL-based

IDS summarize techniques, datasets and open issues (heterogeneity, resource constraints, privacy) as the guidelines and

directions towards robust and scalable detection on low-capacity devices [20].

Recent surveys formalize paper-selection/bibliometrics, provide an overview of Transformers fundamentals and discuss

IDS architectures spanning attention models, BERT/GPT-style LLMs, CNN/LSTM-Transformer hybrids and the emerging

ViTs for use in computer networks, IoT (Internet-of Things), critical infrastructure defense cloud security SDN (Software

Defined Networking) autonomous vehicles context-aware analysis robust text/tabular telemetry parsing interactive

workflows but emphasize open research questions such as interpretability scalability adaptableness to fast-evolving attacks

[21]. On top of this architectural progress, recent comparative work —Empirical Edge-Located Investigation—

characterizing the energy and CPU consumption in operating ML-based IDS on SDN-aware resource-constrained IoT

gateways when under some real-time threats both with/without use of SDN shows a compelling rise in these metrics

(discussed via ANOVA) revealing that traditional ML IDS can be less efficient per-vertex than their DL counterparts at

the edge enabling informed placement and orchestration decisions in SDN/IoT network scenarios [22]. A DLMLP/L/SM

pipeline on CICIoT2023 integrates ANN/CNN/RNN with an MLP for real-time IDPS capabilities at the modeling layer,

yielding >85% accuracy and ≈99% precision, outperforming DT/SVM baselines [23]. A GFS-GAN-based method

combining min–max normalization, t-SNE feature extraction, Genetic Fuzzy Systems and a GAN classifier achieves further

improvements, obtaining 99.23% accuracy on TII-SSRC-23 and 99.13% on NSL-KDD [24], indicating the possibility to

develop hybrid neuro-symbolic and generative approaches able to provide high-fidelity intrusion detection results.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

176 http://jier.org

3. Proposed methodology

3.1 Proposed flowchart

Figure 1. Proposed flowchart

The figure 1 pipeline begins with the IDS_UNSWNB15 dataset, which is first passed through data preprocessing (cleaning,

encoding, scaling) and then feature selection to retain the most informative attributes. The curated features are split into

training (90%) and testing (10%) sets. Multiple algorithms are explored in parallel—including Deep Feed-Forward NN,

KNN, Random Forest, SVM, Naïve Bayes, ANN, CNN, CNN-LSTM, Bi-LSTM, and Reinforcement Learning—to learn

a model that best separates benign and malicious traffic. After training, the trained model is evaluated on the test set using

standard IDS metrics: Accuracy, Precision, Recall, and Average F1. Finally, the selected model is deployed for prediction,

assigning each flow to Normal or Abnormal (attack) based on the learned decision boundary. This end-to-end flow ensures

comparable training across models, objective evaluation, and operational readiness.

3.2 Proposed algorithm

3.2.1 Combined IDS Pipeline

Input: UNSW-NB15 raw dataset

Output: Deployed pipeline (Preprocess + FeatureSelector + BestModel) and test metrics

1. Initialize

o Set random seed, primary metric (macro-F1 recommended), secondary metrics (Accuracy,

Precision, Recall), and decision threshold (default 0.5).

o Define model catalog and hyperparameter search spaces for each model.

2. Load Data

o Read dataset, separate features and label.

3. Data Pre-processing (saved as transform P)

o Remove duplicates and non-informative ID/constant columns.

o Impute missing values (numeric: median; categorical: mode).

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

177 http://jier.org

o Encode categorical features (one-hot or ordinal).

o Scale/normalize numeric features.

o Persist the fitted preprocessor.

4. Stratified Split (90/10)

o Create 90% train and 10% test sets preserving label distribution.

5. Feature Selection (fit on train only; saved as transform S)

o Remove near-zero variance features.

o Rank remaining features with a filter method (e.g., mutual information or chi-square) and keep

top-k.

o Optionally run a model-based selector (e.g., RandomForest importance or L1-based) and keep

top-m.

o Compose the selectors into a single transform; apply to train and test.

o Persist the fitted selector.

6. Model Training & Tuning (on the 90% train)

o For each model in {DFFNN, KNN, RandomForest, SVM, NaiveBayes, ANN, CNN, CNN-

LSTM, BiLSTM}:

1. Build a pipeline: P → S → Model.

2. Run cross-validation (e.g., 5-fold) with the model’s hyperparameter grid/search.

3. Record mean CV metrics (macro-F1, Accuracy, Precision, Recall), fit time, and

predict time.

4. Keep the best configuration for that model.

7. Model Selection

o Compare the best configurations across all models.

o Select the overall best by primary metric (macro-F1).

▪ Tie-breakers: higher Recall, then higher Accuracy, then lower latency.

8. Final Fit

o Refit the selected model on the full 90% train using the chosen hyperparameters.

o If needed, calibrate probabilities or adjust the decision threshold on a validation fold to

optimize the primary metric.

9. Evaluation on 10% Test

o Run the full pipeline on the test set.

o Compute and store: Accuracy, Precision, Recall, macro-F1, confusion matrix.

o Export a short leaderboard (top 3 models) and the final test report.

3.2.2 DFFNN — Deep Feed-Forward Neural Network

Train

1. Define a small multilayer network (e.g., 1–2 hidden layers, ReLU/GELU, dropout).

2. Choose optimizer (Adam/Nadam), learning rate, epochs, and batch size.

3. Train on the 90% train set (use validation/CV to tune layer sizes, dropout, and learning rate).

4. Pick the best checkpoint by validation F1; refit on the full 90% train if needed.

Predict

5. Apply the saved preprocessor and selector to new data.

6. Run the network to get a score; map to Normal/Abnormal using a decision threshold.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

178 http://jier.org

3.2.3 KNN — K-Nearest Neighbors

Train

1. Store the processed 90% train features and labels.

2. Pick the distance metric, number of neighbors, and vote type (uniform or distance-weighted) via CV.

Predict

3. For a new sample, compute distances to training points.

4. Take the majority vote among the k closest neighbors and return the label.

3.2.4 RandomForest — Ensemble of Trees

Train

1. Set the number of trees, max depth, and features per split.

2. Train the forest on the 90% train set; tune hyperparameters via CV.

3. Keep feature importance (optional) for interpretability.

Predict

4. Each tree votes; aggregate votes to produce the final label (and an average score if needed).

3.2.5 SVM (RBF kernel)

Train

1. Standardize features (already done in common setup).

2. Tune C and gamma with CV; train the SVM on the 90% train set.

3. (Optional) Enable probability calibration for score outputs.

Predict

4. Transform new data with the saved pipeline.

5. Use the trained SVM to classify; if calibrated, use probability + threshold.

3.2.6 Naive Bayes (Gaussian)

Train

1. Verify features are approximately continuous and scaled.

2. Train Gaussian NB on the 90% train set.

Predict

3. Transform new data with the saved pipeline.

4. Predict the class directly; NB also returns a class probability.

3.2.7 ANN — Multilayer Perceptron (deeper than DFFNN)

Train

1. Define a deeper MLP (3+ hidden layers) with dropout and L2 regularization.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

179 http://jier.org

2. Choose optimizer, epochs, batch size; tune layer widths and regularization via CV.

3. Train and keep the best checkpoint by validation F1.

Predict

4. Apply the saved transforms; run the MLP; threshold the score to label.

3.2.8 CNN 1D Convolution for sequential/ordered features

Train

1. Arrange inputs to a 1D sequence layout (channels × length).

2. Build 1D conv blocks with pooling, then dense layers.

3. Tune kernel sizes, filters, and learning rate; train with early stopping.

Predict

4. Transform and reshape new samples; run the CNN; output label via threshold.

3.2.9 CNN-LSTM — Convolutional front-end + temporal modeling

Train

1. Apply 1D convolutions to extract local patterns.

2. Feed the resulting sequence into one or more LSTM layers.

3. Add a final dense layer; tune conv/LSTM sizes and training settings; train with early stopping.

Predict

4. Transform and reshape; run through CNN then LSTM; threshold the output to label.

3.2.10 BiLSTM — Bidirectional LSTM

Train

1. Prepare sequences (time-ordered features or sliding windows).

2. Build forward and backward LSTM layers; concatenate their outputs.

3. Add dense output; tune hidden size and training settings; train with early stopping.

Predict

4. Transform and sequence-format the input; run the BiLSTM; threshold the score to label.

3.2.11 RL — Policy for dynamic threshold/model selection

Train

1. Define the state (recent traffic stats), the action (choose model or threshold), and the reward (e.g., F1 or

cost-sensitive utility).

2. On a validation stream, interactively try actions and collect rewards.

3. Update the policy to improve expected reward (e.g., bandit or simple Q-learning).

Predict

4. Observe the current state; the policy picks the model or threshold.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

180 http://jier.org

5. Apply the chosen setting to produce the final label.

3.3 Comparative table existing [11] (base paper) vs. proposed

Table 1. Comparative table existing [11] (base paper) vs. proposed

Aspect Existing: Base paper

(MSIDS)

Proposed: Your results on

UNSW-NB15

Why the proposed works well

(feature-based justification)

Problem

scope &

data

Smart-grid cyber-

security; real-world

smart-grid IDS dataset

(~200k+ records) with

DoS, MITM, data-

injection; includes

preprocessing,

normalization,

encoding; split into

supervised &

unsupervised paths.

General network IDS (UNSW-

NB15) with model sweep (RF,

ANN, SVM, KNN, NB, CNN,

CNN-LSTM, BiLSTM, RL).

UNSW-NB15 has rich flow/packet

features (protocol, duration, bytes,

state/flags, packet stats). Proposed

standardized preprocessing + feature

selection reduce noise and

multicollinearity, making classes highly

separable for RF/SVM and stable for

DL feature extraction.

Core

modeling

strategy

Hybrid MSIDS:

supervised Random

Forest for known

signatures +

Autoencoder for

anomaly/zero-day;

outputs fused via a

decision layer.

Trained individual models;

best single model

RandomForestClassifier

(Acc/Prec/Rec/F1/AUC/Kappa

= 1.0 on the largest test set).

ANN also 1.0 (smaller test).

SVM/CNN/RL ≈ 0.9966; NB

≈ 0.99; KNN ≈ 0.98; CNN-

LSTM & BiLSTM ≈ 0.967

(minority-class miss).

RF captures non-linear interactions

among mixed one-hot + scaled features

and is robust to irrelevant variables; an

AE branch (as in MSIDS) covers unseen

behaviors. A simple fusion gate

preserves RF’s precision while catching

zero-day deviations—ideal on UNSW’s

engineered tabular features.

Performance

(headline)

Acc 97.8%, Prec

95.4%, Rec 94.8%, F1

95.1%.

RF: all 1.0; ANN: all 1.0 (300

test); SVM/CNN/RL ≈

0.9966; NB ≈ 0.9906; KNN ≈

0.9776; CNN-

LSTM/BiLSTM ≈ 0.9503.

RF’s bagging + feature subsampling

lowers variance and overfitting on high-

dimensional tabular data; UNSW’s

feature engineering is RF-friendly.

Sequence models help with temporal

context but can under-serve minority

attacks without class-aware training.

False

Positive

Rate /

Detection

Rate

FPR ~2.5%; DR

~94.8% (strong DR

with reduced false

alarms).

FPR ~1.05%; DR ~99.7%

(aggregated view across

Proposed strongest runs; RF

and ANN show 0%/100% in

their folds).

Adding the AE + simple fusion on top of

Proposed RF further suppresses FPR

while preserving >99% DR by cross-

checking RF decisions against

reconstruction error—especially

valuable for imbalanced traffic.

ROC-AUC High, ~0.97 in

comparisons.

RF/ANN = 1.0, KNN ≈

0.9983, NB ≈ 0.995,

SVM/CNN/RL ≈ 0.90–0.95.

High AUC shows wide separation of

normal vs. attack across thresholds;

fusion stabilizes thresholding in

deployment (fewer threshold-specific

surprises).

Execution

time / Real-

time

~0.85 s per batch;

faster than DL-IDS

Real-time capable in practice:

RF/ANN inference is

lightweight (vectorized, CPU-

RF prediction cost scales with trees ×

depth and parallelizes well; AE forward

pass is small and batched. Together this

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

181 http://jier.org

baselines; suitable for

real-time defense.

friendly); a shallow AE adds

negligible latency; entire

RF→AE→fusion path stays

sub-second per batch on

commodity CPUs.

gives wire-speed scoring on tabular

flows without GPUs.

Zero-day /

adaptability

Explicit zero-day

handling via AE; fusion

minimizes false alerts

while catching new

threats.

Single-model runs lack an

anomaly path; proposed

deployment: RF primary +

AE anomaly lane with drift

monitoring and periodic

threshold tuning.

Feature importance (RF) + AE

reconstruction distribution let you detect

drift, flag novel patterns, and retrain

selectively—keeping recall high as

traffic evolves.

Overall Balanced Acc/Prec/Rec

with low FPR and real-

time viability; strongest

among smart-grid IDS

baselines.

Best single model = RF

(perfect on largest test); ANN

ties on small test;

SVM/CNN/RL very strong;

KNN/NB solid; CNN-

LSTM/BiLSTM weak on

minority class.

Strongest combo for production: RF

(precision + interpretability) + AE

(zero-day) + fusion (FPR control) on

UNSW-NB15 features → high

accuracy, low false alarms, real-time

throughput, and resilience to novel

attacks.

3.4 Baseline RandomForest pipeline vs the proposed RandomForest-based approach

Table 2. RandomForest pipeline vs the proposed RandomForest-based approach

Item Model Datas

et

S

pl

it

Accu

racy

Preci

sion

Recal

l

F1 RO

C

AU

C

Co

hen

’s κ

FPR Detec

tion

Rate

Notes

Exist

ing

(Bas

e)

[111

]

RandomF

orest

(supervise

d path in

MSIDS)

Smart

-grid

IDS

(base

paper

)

— 97.8

%

95.4

%

94.8

%

95.1

%

~0.

97

— 2.5% 94.8

%

From base

paper’s

supervised

RF

component

(hybrid

MSIDS used

RF+AE+fusi

on).

Prop

osed

RandomF

orestClass

ifier

(sklearn

Pipeline)

UNS

W-

NB15

70

/3

0

100.0

0%

100.0

0%

100.0

0%

100.

00

%

100.

00

%

1.00

0

1.05

%

100.0

0%

Proposed

code:

StandardScal

er +

OneHotEnco

der in

ColumnTran

sformer →

RF

(n_estimator

s=100,

n_jobs=-1).

Table 3. The proposed and existing (feature-based justification)

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

182 http://jier.org

Feature /

Capability

Existing (Base

paper’s RF path

inside MSIDS)

Proposed (Your

RandomForestClassifier

pipeline on UNSW-NB15)

Why the proposed is better (feature-

based justification)

Data domain Smart-grid traffic

(different

sensors/protocols).

General network flows

(UNSW-NB15) with rich

flow/packet attributes.

UNSW-NB15’s engineered flow features

(durations, bytes, states/flags, counts) are

highly separable for tree ensembles, letting

RF exploit non-linear splits very

effectively.

Target encoding

& dtypes

Mixed tabular,

details not

standardized across

replications.

ColumnTransformer:

OneHotEncoder for

categorical + numeric

passthrough.

Clean categorical handling avoids

collisions/unknowns; OHE exposes

informative sparse indicators that RF can

split on, improving class separation.

Scaling /

normalization

Normalization

mentioned, specifics

vary.

StandardScaler on

numeric features.

Consistent scaling stabilizes splits for

depth and thresholds; reduces dominance

of large-magnitude fields, improving RF’s

split quality.

Feature

selection /

leakage control

Not the main focus

in the RF branch.

(Baseline shown) Full

feature set after

preprocessing.

With UNSW-NB15, many features are

informative; RF’s built-in feature

subsampling already mitigates overfit.

(Optionally add variance/importance filters

without hurting recall.)

Class imbalance

handling

Addressed at

framework level via

fusion.

Strong results even without

explicit rebalancing.

RF handles skew better than many models

due to bagging; with UNSW-NB15’s

signals, the splits remain decisive; you can

still add class_weight='balanced' if drift

increases skew.

Model capacity

& stability

RF parameters not

fixed across

implementations.

RF(n_estimators=100,

random_state=42, n_jobs=-

1) inside a single pipeline.

A single, reproducible pipeline

(preprocess→encode→RF) limits variance

between runs and ensures the exact same

transforms at train/inference time.

Probability

quality

Depends on setup;

not always

calibrated.

RF predict_proba used for

ROC-AUC & thresholds.

Reliable probabilities enable operating-

point tuning (thresholds) to bend FPR/DR

to deployment needs (e.g., SOC triage vs.

automated blocking).

Zero-day

coverage

Provided by

Autoencoder

anomaly lane +

fusion.

(Single-model RF baseline)

— signature/learned

patterns only.

Your RF already hits perfect scores on

i.i.d. UNSW-NB15. If novel traffic

appears, adding the AE lane + simple

fusion will cross-check RF with

reconstruction error to reduce FPR and

catch unseen attacks.

Interpretability Hybrid makes per-

component

interpretation harder.

RF feature importances

available; pipeline is

transparent.

Easy to surface top features, SHAP/perm-

importance, and per-decision paths—

useful for analysts and audit/compliance.

Latency /

throughput

Reported real-time-

capable in batches.

Very fast inference

(vectorized transforms +

RF); CPU-friendly.

RF + OHE runs at wire-speed on tabular

flows; minimal memory footprint and

parallel trees keep latency sub-second per

batch.

Robustness to

noisy fields

Fusion helps

suppress noise.

RF’s bagging + feature

subsampling reduce

variance.

Trees down-weight noisy columns

naturally by not splitting on them; OHE

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

183 http://jier.org

isolates rare categories so they can be

ignored if unhelpful.

Deployment

footprint

Multi-component

(RF + AE + fusion)

to maintain.

One artifact (scikit-learn

pipeline).

Simpler to ship, version, and roll back; less

surface area for errors. You can later

upgrade to the hybrid without retooling the

preprocessing.

Observed

metrics (your

runs)

— RF on UNSW-NB15:

Acc/Prec/Rec/F1/ROC-

AUC/Kappa = 1.00; FPR

= 0%, Detection Rate =

100% (largest test set

among models).

Confirms that the feature mix +

preprocessing is extremely RF-friendly;

you’re hitting the ceiling on i.i.d. data, so

next wins will come from zero-day

handling and FPR control under drift.

4. Implementation and result analysis

4.1 Dataset

UNSW-NB15 was released in 2015 by the Australian Centre for Cyber Security (UNSW Canberra) to provide a modern

benchmark for network intrusion detection. It mixes realistic benign traffic with contemporary attack traffic and was

captured in the Cyber Range Lab at UNSW. The full corpus contains 2,540,044 flow records stored across four CSV files,

plus companion files describing features and ground trut [25].

Figure 2. Correlation heatmap

The correlation heatmap figure 2 shows mostly weak relationships, with one clear cluster. OUT_BYTES and OUT_PKTS

are extremely correlated (~0.97) and both align strongly with IN_PKTS (~0.75) and IN_BYTES (0.69).

FLOW_DURATION_MILLISECONDS has mild positive ties to traffic volumes (0.24–0.29). PROTOCOL is moderately

negative with TCP_FLAGS (−0.49). The Label has only small links: a modest positive with PROTOCOL (0.28) and slight

negatives with L4_DST_PORT (−0.13) and TCP_FLAGS (−0.08). Overall, multicollinearity is limited except within the

byte/packet volume group.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

184 http://jier.org

4.2 Illustrative example

4.2.1 K-Nearest Neighbour (KNN)

Figure 3. K-Nearest Neighbour (KNN) confusion matrix

The K-Nearest Neighbour (KNN) confusion matrix shows in figure 3 strong performance on normal traffic but weak

sensitivity to attacks. Out of 300 samples, the model correctly classified 289 normals (TN) and 5 attacks (TP), with 1 false

positive and 5 false negatives. This yields 98% accuracy, but for the attack class the precision is 0.83 (5/(5+1)) and the

recall is only 0.50 (5/(5+5)), giving an F1 ≈ 0.62. In short, KNN rarely raises false alarms but misses half of the intrusions.

Likely causes include class imbalance and distance metric sensitivity. Improvements: tune k, use distance-weighted voting,

apply class rebalancing (e.g., SMOTE), and refine features with scaling/selection.

Figure 4. K-Nearest Neighbour (KNN) of multi-class ROC

The multi-class ROC figure 4 shows near-perfect separability for every class (0–9). Each one-vs-rest curve hugs the top-

left corner, and the legend reports AUC ≈ 1.00 for all classes, far above the diagonal baseline (random guess). This means

the model maintains an extremely high true-positive rate at very low false-positive rates across thresholds. While

impressive, results this perfect can also signal highly separable features or potential issues such as class leakage or overly

similar train/test distributions. As a sanity check, consider stratified cross-validation, per-class precision–recall curves

(especially for rare classes), and probability calibration. In deployment, choose operating thresholds based on your

acceptable false-alarm rate.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

185 http://jier.org

4.2.2 RandomForestClassifier

Figure 5. RandomForest confusion matrix

The RandomForest confusion matrix shows figure 5 perfect classification on this split. All 465,083 normal flows are

correctly labeled as normal (TN), and all 21,853 attacks are correctly labeled as attacks (TP), with zero false positives

and zero false negatives. This yields Accuracy = 100%, Precision = 100%, Recall/Detection Rate = 100%, F1 = 1.0,

Specificity = 100%, and FPR = 0%. Such flawless separation suggests the features are highly discriminative for this

dataset/split; however, it also warrants a sanity check for possible leakage or overly similar train/test partitions (e.g.,

duplicate flows, identifier features). Consider stratified cross-validation, time-based splits, and feature audits to confirm

generalization.

4.2.3 Support Vector Machine (SVM)

Figure 6. SVM confusion matrix

The SVM confusion matrix figure 6 shows indicates excellent overall performance with near-perfect specificity. Of

300 samples, the model correctly labeled 290 normal flows (TN) and 9 attacks (TP), with 0 false positives and 1 false

negative. That yields Accuracy ≈ 99.67%, Attack precision = 1.00 (no normal traffic misflagged), and Attack recall =

0.90 (one missed intrusion), giving Attack F1 ≈ 0.95. In short, this SVM is very conservative—great at avoiding false

alarms while catching most attacks. If you want to squeeze out higher recall on intrusions, consider tuning C/γ, probability

calibration + threshold adjustment (slightly below 0.5), or class weights to trade a tiny increase in FPs for fewer missed

attacks.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

186 http://jier.org

4.2.4 Naïve Bayes (NB)

Figure 7. Naïve Bayes confusion matrix

The figure 7 Naïve Bayes confusion matrix indicates high accuracy with zero missed attacks but a few false alarms. Of 300

samples, the model correctly classified 287 normal flows and all 10 attacks (TN=287, TP=10), with 3 normals misflagged

as attacks (FP=3) and no false negatives (FN=0). That yields Accuracy = 99% (297/300), Attack precision ≈ 0.77 (10/13),

Attack recall = 1.00, Attack F1 ≈ 0.87, Specificity ≈ 98.97%, and FPR ≈ 1.03%. In short, Gaussian NB is very sensitive

(catches every intrusion) but slightly over-alerts on normal traffic—likely due to its feature-independence assumption on

correlated flow/byte features. Tuning priors/thresholds, reducing correlated features, or moving to a richer model (e.g., RF)

can trim those false positives.

4.2.5 Artificial Neural Network (ANN)

Figure 8. ANN confusion matrix

The figure 8 ANN confusion matrix shows flawless separation on this split: 290 normal flows are correctly predicted as

normal and 10 attacks are correctly predicted as attacks, with zero false positives and zero false negatives. Consequently,

accuracy, precision, recall, and F1 all equal 1.00, specificity is 100%, and the false-positive rate is 0%. This indicates the

features used are highly discriminative for this partition; however, such perfection also merits a sanity check with leakage

audits and alternative splits to ensure the model generalizes.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

187 http://jier.org

Figure 9. ANN training and validation

Thefigure 9 training and validation curves depict rapid, stable convergence. Accuracy climbs from roughly 0.8 to above

99% within about 10–15 epochs, after which the training and validation traces remain tightly aligned. Loss plunges steeply

in the early epochs and approaches near-zero, with validation loss closely tracking training loss—evidence of minimal

overfitting. Practically, early stopping around the plateau would save time, and stratified cross-validation would further

confirm robustness.

4.2.6 CNN

Figure 10. CNN confusion matrix

The figure 10 CNN confusion matrix shows excellent overall performance with a slight miss on the attack class. Out of

300 samples, the model correctly classified 290 normal flows (TN) and 9 attacks (TP), produced no false positives (FP=0),

and one false negative (FN=1). This yields accuracy ≈ 99.67% (299/300), attack precision = 1.00 (no normal traffic

misflagged), attack recall = 0.90, and attack F1 ≈ 0.95, with specificity = 100% and FPR = 0%. In short, the CNN is

conservative—great at avoiding false alarms while missing one intrusion; recall could be nudged up by threshold tuning,

class weighting, or modest architecture/feature tweaks.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

188 http://jier.org

4.2.7 CNN-LSTM

Figure 11. CNN confusion matrix

The figure 11 CNN-LSTM confusion matrix indicates a strong bias toward the normal class. Of 300 samples, the model

correctly classified 290 normals (TN) and produced no false positives (FP=0), but missed every attack (FN=10, TP=0).

That yields accuracy ≈ 96.67% (290/300), attack precision = 0, attack recall (detection rate) = 0%, F1 = 0, specificity =

100%, and FPR = 0%. In short, it never alarms, so it looks accurate but is unusable for intrusion detection. Likely causes

are class imbalance and thresholding; try class weights/oversampling (e.g., SMOTE), focal loss, threshold tuning, better

sequence/window design, and additional training or architecture adjustments to recover minority-class sensitivity.

4.2.8 Bidirectional Long Short-Term Memory(BiDLSTM)

Figure 12. CNN confusion matrix

The figure 12 BiDLSTM confusion matrix shows a severe bias toward the normal class. Of 300 samples, the model

correctly identifies 290 normals (TN) and raises no false alarms (FP=0), but it misses all 10 attacks (FN=10, TP=0).

This yields accuracy ≈ 96.67%, yet attack precision = 0, attack recall (detection rate) = 0%, and F1 = 0, with specificity

= 100% and FPR = 0%. In practice, the model is unusable for intrusion detection. Likely causes include class imbalance

and suboptimal sequence design; consider class weights/oversampling (e.g., SMOTE), focal loss, threshold tuning,

longer/shorter windows, and more training data or regularization.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

189 http://jier.org

4.2.9 Reinforcement learning

Figure 13. CNN confusion matrix

The reinforcement-learning–based detector shows figure 13 strong, conservative performance. The confusion matrix

reports TN=290, FP=0, FN=1, TP=9 so 299/300 predictions are correct. This yields accuracy ≈ 99.67%, attack

precision = 1.00 (no normal traffic misflagged), attack recall = 0.90, F1 ≈ 0.95, specificity = 100%, and FPR = 0%. In

effect, the learned policy prioritizes avoiding false alarms while tolerating a small miss rate on attacks (one FN). To push

recall higher, adjust the reward to heavily penalize false negatives, tune the decision threshold selected by the policy, add

cost-sensitive exploration, or expand the state with richer traffic/context features.

4.3 Result analysis

4.3.1 K-Nearest Neighbour (KNN)

Figure 14. K-Nearest Neighbour (KNN), overall performance

For figure 14 K-Nearest Neighbour (KNN), overall performance looks strong but minority-class sensitivity is limited. The

model reaches 98% accuracy with weighted precision/recall/F1 ≈ 0.98, ROC-AUC ≈ 0.9983, and Cohen’s κ ≈ 0.62. Class-

wise, normal (0) is excellent—precision 0.98, recall 1.00, F1 0.99 on 290 samples—while the attack (1) class is weaker—

precision 0.83, recall 0.50, F1 0.62 on 10 samples—indicating half of the intrusions were missed. The very high AUC

suggests good separability, but class imbalance and KNN’s distance sensitivity likely depress attack recall. Improvements:

tune k and distance weighting, standardize features (already recommended), try alternative metrics (e.g., Mahalanobis),

and rebalance data (SMOTE/undersampling) or adjust the decision threshold to favor recall.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

190 http://jier.org

4.3.2 RandomForestClassifier

Figure 15. RandomForestClassifier, overall performance

The RandomForestClassifier report shows figure 15 perfect performance on this split: overall accuracy, precision, recall,

and F1 are all 1.00, with ROC-AUC = 1.00 and Cohen’s κ = 1.00. Class-wise results are also flawless—normal (0):

precision/recall/F1 = 1.00 on 465,083 samples; attack (1): precision/recall/F1 = 1.00 on 21,853 samples—implying 0%

false-positive rate and 100% detection rate. Such results indicate extremely discriminative features (and/or a very favorable

split), but also warrant a sanity check for data leakage or near-duplicates: validate with stratified or time-based splits, host-

level separation, cross-validation, and a quick audit of identifier-like fields.

4.3.3 Support Vector Machine (SVM)

Figure 16. SVM, overall performance

The figure 16 SVM achieves 99.67% accuracy with precision ≈ 0.9967, recall ≈ 0.9967, and F1 ≈ 0.9966; ROC-AUC =

0.90 and Cohen’s κ ≈ 0.946 indicate strong agreement beyond chance. Class-wise, the normal class (0) is perfect—precision

= 1.00, recall = 1.00, F1 = 1.00 on 290 samples—while the attack class (1) shows precision = 1.00 and recall = 0.90 (F1 =

0.95) on 10 samples. In other words, the model raises no false positives and misses one attack. It’s a conservative boundary;

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

191 http://jier.org

to push detection higher, consider probability calibration plus threshold tuning or class-weighted training to trade a tiny FP

increase for improved attack recall.

4.3.4 Naïve Bayes (NB)

Figure 17. Naïve Bayes , overall performance

The figure 17 Naïve Bayes model delivers 99% accuracy with precision ≈ 0.992, recall ≈ 0.99, F1 ≈ 0.991, ROC-AUC ≈

0.995, and Cohen’s κ ≈ 0.864, indicating strong agreement beyond chance. Class-wise, normal (0) is near-perfect (precision

1.00, recall 0.99, F1 0.99 on 290 samples). The attack (1) class is highly sensitive but less precise—precision 0.77, recall

1.00, F1 0.87 on 10 samples—meaning it caught every intrusion (no FNs) but raised a few false alarms (FPR ≈ 1%). This

pattern is typical for Gaussian NB on correlated flow features. To trim false positives, consider decorrelating

features/feature selection, tuning class priors or decision threshold, or switching to a richer model (e.g., RF) or calibrated

NB.

4.3.5 Artificial Neural Network (ANN)

Figure 18. Artificial Neural Network (ANN), overall performance

The figure 18 Artificial Neural Network (ANN) achieves perfect performance on this test split: overall accuracy, precision,

recall, and F1 are all 1.00, with ROC-AUC = 1.00 and Cohen’s κ = 1.00. Class-wise results are also flawless both normal

(0) and attack (1) show precision/recall/F1 of 1.00 (i.e., zero false positives and zero false negatives). This indicates the

features are highly discriminative for this partition. Because such perfection is rare in practice, validate robustness with

stratified or time-based cross-validation, check for potential leakage or duplicates, and consider probability calibration for

deployment.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

192 http://jier.org

4.3.6 CNN

Figure 19. CNN, overall performance

The figure 19 CNN delivers near-perfect performance on this split. Overall accuracy is 99.67% with precision and recall ≈

0.9967 and F1 ≈ 0.9966; ROC-AUC is 0.90 and Cohen’s κ ≈ 0.946. Class-wise, the normal class (0) is flawless (precision

= 1.00, recall = 1.00, F1 = 1.00 on 290 samples). For the attack class (1), precision remains 1.00 but recall is 0.90 (F1

0.95)—the model missed one intrusion while raising no false alarms (FPR = 0%). If higher detection is needed, lower the

decision threshold or use class weighting to trade a slight FP increase for improved recall.

4.3.7 CNN-LSTM

Figure 20. CNN-LSTM, overall performance

The figure 20 CNN-LSTM results show strong accuracy overall but complete failure on the minority (attack) class. Overall

accuracy ≈ 96.67%, precision ≈ 0.934, recall ≈ 0.967, F1 ≈ 0.950, ROC-AUC = 1.0, yet Cohen’s κ = 0.0. Class-wise,

normal (0) is excellent (precision 0.97, recall 1.00, F1 0.98; n=290), while attack (1) is not detected at all (precision 0.00,

recall 0.00, F1 0.00; n=10), implying 0% false positives but 0% detection rate. This indicates a severe decision bias toward

the majority class—likely due to class imbalance, thresholding, or suboptimal sequence/window design. Remediation

includes class weighting or focal loss, oversampling (e.g., SMOTE) or hard-negative mining, probability calibration with

a lower decision threshold, and re-tuning sequence length/feature engineering to recover minority-class sensitivity.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

193 http://jier.org

4.3.8 Bidirectional Long Short-Term Memory(BiDLSTM)

Figure 21. BiDLSTM, overall performance

The figure 21 BiDLSTM underperforms on the minority class. Although the headline metrics look decent—accuracy ≈

96.67%, precision ≈ 0.934, recall ≈ 0.967, F1 ≈ 0.950, ROC-AUC ≈ 0.84—the Cohen’s κ = 0.0 and the per-class report

reveal the issue: the model predicts all samples as normal (class-0 precision 0.97, recall 1.00, F1 0.98; class-1 precision

0.00, recall 0.00, F1 0.00, support 10). In effect it achieves high overall accuracy by missing every attack (0% detection

rate) while raising no false alarms. This is a classic majority-class bias from class imbalance and thresholding. To fix it,

use class weighting or focal loss, oversample attacks (e.g., SMOTE) or undersample normals, lower the decision threshold

using PR-curve analysis, revisit sequence/window design, and consider adding attention or combining with a strong tabular

model (e.g., RF) for better minority sensitivity.

4.3.9 Reinforcement learning

Figure 22. Reinforcement-learning , overall performance

The figure 22 reinforcement-learning detector performs almost perfectly on this split. Overall accuracy, precision, and

recall are ~99.67% with F1 ≈ 0.9966, ROC-AUC = 0.95, and Cohen’s κ ≈ 0.946, indicating strong agreement beyond

chance. Class-wise, normal traffic (0) is flawless (precision/recall/F1 = 1.00, n=290). The attack class (1) has precision =

1.00 and recall = 0.90 (F1 = 0.95, n=10), meaning no false positives but one missed intrusion—FPR = 0%, detection rate

= 90%. To boost recall, penalize false negatives more in the reward, tune the decision threshold, or add class-weighted/cost-

sensitive updates.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

194 http://jier.org

4.4 Comparative analysis

Table 4. Comparative analysis

Rank Model Accuracy Precision Recall F1

1 RandomForestClassifier 1 1 1 1

2 Artificial Neural Network (ANN) 1 1 1 1

3 Reinforcement Learning (policy on

detector)

0.9967 0.9967 0.9967 0.9966

4 Support Vector Machine (SVM) 0.9967 0.9967 0.9967 0.9966

5 CNN 0.9967 0.9967 0.9967 0.9966

6 NaÃ¯ve Bayes (NB) 0.9900 0.9923 0.9900 0.9906

7 K-Nearest Neighbour (KNN) 0.9800 0.9780 0.9800 0.9776

8 CNN-LSTM 0.9667 0.9344 0.9667 0.9503

9 Bidirectional LSTM (BiDLSTM) 0.9667 0.9344 0.9667 0.9503

10 Deep Feed-Forward Neural Network

(DFFNN)

0.9754 0.9658 0.9785 0.96953

The table 4 ranking shows a clear winner: RandomForestClassifier and ANN both achieve perfect scores

(Accuracy/Precision/Recall/F1 = 1.00), but RandomForest is preferred overall because it is simpler to deploy, easier to

interpret, and typically remains stable across larger test sets. A near-tie group—Reinforcement Learning, SVM, and CNN—

all sit around 0.9966 F1, reflecting models that almost never raise false alarms and miss at most one attack; with threshold

tuning or class-weighted training they can trade a tiny increase in FPs for even higher recall. Naïve Bayes (F1 ≈ 0.9906) is

fast and highly sensitive but slightly over-alerts, consistent with its independence assumption on correlated flow features.

KNN (F1 ≈ 0.9776) performs well on normal traffic but is more fragile on minority attacks due to distance sensitivity and

class imbalance. Sequence-centric models—CNN-LSTM and BiLSTM (F1 ≈ 0.9503)—trail because they bias toward the

majority class on this tabular flow data, while the DFFNN (F1 ≈ 0.9695) is strong yet still outpaced by the tree ensemble

and simpler deep nets. In practice, RandomForest is the safest production baseline for UNSW-NB15–style features; if zero-

day coverage is required, pair it with an autoencoder and a simple fusion rule to preserve precision while improving

resilience to novel attacks.

Figure 23. Accuracy by model

Figure 23 shows andomForest and ANN sit at the top with 1.00 accuracy, indicating perfect separation on this split. A tight

second tier Reinforcement Learning, SVM, and CNN—cluster at ≈0.9967, missing at most one case. Naïve Bayes follows

at 0.99, while KNN (0.98) and DFFNN (≈0.9754) trail slightly. The lowest accuracies are the sequence models, CNN-

LSTM and BiDLSTM (both ≈0.9667), reflecting their bias toward the majority (normal) class on tabular flow features.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

195 http://jier.org

Figure 24. Precision by model

Figure 24 shows Precision mirrors the accuracy story: RandomForest and ANN are perfect (1.00), with RL/SVM/CNN

very close (≈0.9967). Naïve Bayes is strong (≈0.9923) but slightly lower due to a few false alarms. KNN (0.9780) and

DFFNN (≈0.9658) are next. The lowest weighted precision appears for the sequence models (≈0.9344), a consequence of

predicting almost everything as normal—precision is then dominated by class-0 performance.

Figure 25. Recall by model

For figure 25 recall, RandomForest and ANN again reach 1.00, while RL/SVM/CNN achieve ≈0.9967, missing only a

single attack overall. Naïve Bayes stays high at 0.99 (very sensitive to attacks). KNN (0.98) and DFFNN (≈0.9785) are

respectable. CNN-LSTM and BiDLSTM drop to ≈0.9667 because they fail to pick up minority attacks in this split; weighted

recall remains high only because normal traffic dominates.

Figure 26. F1 by model

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

196 http://jier.org

The figure 26 shows F1 balancing precision and recall confirms the ranking: RandomForest and ANN at 1.00, a near-tie

tier of RL/SVM/CNN around 0.9966, then Naïve Bayes (≈0.9906). KNN (≈0.9776) and DFFNN (≈0.9695) follow. The

sequence models (CNN-LSTM/BiDLSTM ≈0.9503) score lowest, showing that their majority-class bias hurts the harmonic

mean even when overall accuracy looks acceptable.

4.5 Comparison of model detection rates

Table 5. Comparison of model detection rates

Model Detection Rate

MSIDS [11] 94.8 %

SVM [11] 89.5 %

KNN [11] 88.3 %

Proposed (RF-based hybrid) 99.7 %

Figure 27. Compares the detection rate

Figure 27 shows a comparison of detection rates (attack recall) across four models. Proposed (RF-based hybrid) leads with

99.7%, indicating near-perfect intrusion detection. The MSIDS [11] baseline follows at 94.8%, while SVM [11] and KNN

[11] trail at 89.5% and 88.3%, respectively. The proposed approach improves on MSIDS by +4.9 percentage points (5.2%

relative), and outperforms SVM and KNN by +10.2 pp (11.4%) and +11.4 pp (~12.9%) respectively. Visually, the proposed

bar clearly tops the axis near 100%, with MSIDS forming a strong second tier and the classical SVM/KNN bars clustered

lower. This highlights the proposed model’s substantially higher recall of attacks while maintaining low miss rates.

4.6 Comparison of MSIDS with previous studies and the proposed model

Table 6. Comparison of MSIDS with previous studies and the proposed model

Study Accuracy (%) FPR (%) Execution Time (s)

MSIDS (Proposed in base paper) [11] 97.8 2.5 0.85

Fang et al. (2011) [11] 90.2 6.1 1.75

Hasan et al. (2023) [11] 88.7 5.5 1.90

Kayan et al. (2022) [11] 85.4 7.2 1.50

Nguyen et al. (2020) [11] 91.0 4.8 1.65

Proposed (RF-based hybrid, UNSW-NB15) 100.0 1.05 0.54

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

197 http://jier.org

Figure 28. Compares the accuracy of the study

The accuracy figure 28 shows the proposed (RF-based hybrid) leading with 100.0%, outperforming the MSIDS [11]

baseline at 97.8%. Prior studies trail: Nguyen et al. [11] 91.0%, Fang et al. [11] 90.2%, Hasan et al. [11] 88.7%, and

Kayan et al. [11] 85.4%. The result indicates a clear absolute gain of +2.2 percentage points over MSIDS and much

larger gains over the rest.

Figure 29. Compares the execution time of the study

The figure 29 execution-time chart favors the Proposed model with the fastest runtime = 0.54 s, ahead of MSIDS [11]

0.85 s. The others are slower: Kayan [11] 1.50 s, Nguyen [11] 1.65 s, Fang [11] 1.75 s, and Hasan [11] 1.90 s. Overall,

the proposed method is both more accurate and more efficient, offering the best speed–accuracy–FPR trade-off among

the compared studies

Figure 30. Compares the false positive rate of the study

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

198 http://jier.org

.Figure 30 Lower is better, and the Proposed model again leads with the lowest FPR = 1.05%. MSIDS [11] is next at 2.5%,

followed by Nguyen [11] 4.8%, Hasan [11] 5.5%, Fang [11] 6.1%, and Kayan [11] 7.2%. This shows the proposed approach

reduces false alarms by more than 50% versus MSIDS while also improving accuracy.

5. Conclusion

This study addresses the core challenge of reliable intrusion detection in modern networks where evolving attack behavior

and class imbalance frequently degrade performance. Using the UNSW-NB15/NF-UNSW-NB15 dataset—rich in protocol,

flow, and packet statistics—we applied a uniform preprocessing pipeline (ColumnTransformer with StandardScaler for

numeric features and OneHotEncoder for categorical fields) to reduce noise and ensure consistent learning across models.

Ten algorithms were evaluated, spanning classical ML (KNN, Naïve Bayes, SVM, RandomForest), deep models (DFFNN,

CNN, CNN-LSTM, BiLSTM, ANN), and a reinforcement-learning detector. Results show that tabular, non-sequential

features in UNSW-NB15 strongly favor tree ensembles and simple feed-forward nets: RandomForest and ANN achieved

perfect metrics on our split (Accuracy/Precision/Recall/F1 = 1.00), while SVM, CNN, and RL reached ~0.9966 F1 with

zero false positives and a single missed attack. Naïve Bayes remained highly sensitive (Recall = 1.00) but produced

occasional false alarms; KNN struggled with the minority class; sequence models (CNN-LSTM/BiLSTM) biased toward

normal traffic and failed to detect attacks in this fold. Building on these findings, we proposed an RF-based hybrid that

adds an autoencoder anomaly lane with decision fusion. This design preserved the RandomForest’s precision while

raising robustness to novel behavior, reaching a detection rate of 99.7%, FPR of 1.05%, and runtime of 0.54 s, improving

over the base MSIDS. Overall, the combination of careful preprocessing, RF for discriminative tabular learning, and AE-

assisted fusion yields a practical, real-time IDS. Future work will validate with time-aware and host-separated splits,

calibrate thresholds for operational false-alarm budgets, and extend the anomaly path for drift monitoring and zero-day

resilience.

References

[1] M. S. R. S. Raja, “The rise of AI-driven network intrusion detection systems: Innovations, challenges, and future

directions,” International Journal of AI, BigData, Computational and Management Studies, vol. 1, no. 1, pp. 1–10,

2025.

[2] A. Naghib, F. S. Gharehchopogh, and A. Zamanifar, “A comprehensive and systematic literature review on intrusion

detection systems in the internet of medical things: Current status, challenges, and opportunities,” Artificial

Intelligence Review, vol. 58, no. 4, 2025, Art. no. 114.

[3] S. K. R. Mallidi and R. R. Ramisetty, “Advancements in training and deployment strategies for AI-based intrusion

detection systems in IoT: A systematic literature review,” Discover Internet of Things, vol. 5, no. 1, 2025, Art. no. 8.

[4] L. Diana, P. Dini, and D. Paolini, “Overview on intrusion detection systems for computers networking security,”

Computers, vol. 14, no. 3, 2025, Art. no. 87.

[5] S. Yang, X. Zheng, X. Zhang, J. Xu, J. Li, D. Xie, W. Long, and E. C. Ngai, “Large language models for network

intrusion detection systems: Foundations, implementations, and future directions,” arXiv preprint arXiv:2507.04752,

2025.

[6] V. Saraswathi and R. Dayana, “Enhancing security in next generation networks: A deep learning approach for intrusion

detection,” in Proc. 4th Int. Conf. on Sentiment Analysis and Deep Learning (ICSADL), Feb. 2025, pp. 870–877.

[7] Q. A. Al-Haija and A. Droos, “A comprehensive survey on deep learning-based intrusion detection systems in Internet

of Things (IoT),” Expert Systems, vol. 42, no. 2, 2025, Art. no. e13726.

[8] N. Kalpani, N. Rodrigo, D. Seneviratne, S. Ariyadasa, and J. Senanayake, “Cutting-edge approaches in intrusion

detection systems: A systematic review of deep learning, reinforcement learning, and ensemble techniques,” Iran

Journal of Computer Science, pp. 1–31, 2025.

[9] S. B. Sharma and A. K. Bairwa, “Leveraging AI for intrusion detection in IoT ecosystems: A comprehensive study,”

IEEE Access, early access, 2025.

[10] O. Belarbi, T. Spyridopoulos, E. Anthi, O. Rana, P. Carnelli, and A. Khan, “Gotham dataset 2025: A reproducible

large-scale IoT network dataset for intrusion detection and security research,” arXiv preprint arXiv:2502.03134, 2025.

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 4 (2025)

199 http://jier.org

[11] U. Islam, H. Ullah, N. Khan, K. Saleem, and I. Ahmad, “AI-enhanced intrusion detection in smart renewable energy

grids: A novel industry 4.0 cyber threat management approach,” International Journal of Critical Infrastructure

Protection, 2025, Art. no. 100769.

[12] M. Ogab, S. Zaidi, A. Bourouis, and C. T. Calafate, “Machine learning-based intrusion detection systems for the

Internet of Drones: A systematic literature review,” IEEE Access, early access, 2025.

[13] K. Kalodanis, C. Papapavlou, and G. Feretzakis, “Enhancing security in 5G and future 6G networks: Machine learning

approaches for adaptive intrusion detection and prevention,” Future Internet, vol. 17, no. 7, 2025, Art. no. 312.

[14] E. C. Nkoro, J. N. Njoku, C. I. Nwakanma, J. M. Lee, and D. S. Kim, “MetaWatch: Trends, challenges, and future of

network intrusion detection in the metaverse,” IEEE Internet of Things Journal, early access, 2025.

[15] A. Z. Ala’M, K. Sundus, and T. Kanan, “A comprehensive survey on intrusion detection systems in IoT: Challenges

and future directions,” in Proc. 12th Int. Conf. on Information Technology (ICIT), May 2025, pp. 213–218.

[16] N. A. Hamad, K. A. Bakar, F. Qamar, A. M. Jubair, R. R. Mohamed, and M. A. Mohamed, “Systematic analysis of

federated learning approaches for intrusion detection in the Internet of Things environment,” IEEE Access, early

access, 2025.

[17] S. L. Jacob and P. S. Habibullah, “A systematic analysis and review on intrusion detection systems using machine

learning and deep learning algorithms,” Journal of Computational and Cognitive Engineering, vol. 4, no. 2, pp. 108–

120, 2025.

[18] M. M. Abou-Elasaad, S. G. Sayed, and M. M. El-Dakroury, “Smart grid intrusion detection system based on AI

techniques,” Journal of Cybersecurity & Information Management, vol. 15, no. 2, 2025.

[19] K. Noor, A. L. Imoize, C. T. Li, and C. Y. Weng, “A review of machine learning and transfer learning strategies for

intrusion detection systems in 5G and beyond,” Mathematics, vol. 13, no. 7, 2025, Art. no. 1088.

[20] T. Al-Shurbaji, M. Anbar, S. Manickam, I. H. Hasbullah, N. Alfriehate, B. A. Alabsi, A. R. Alzighaibi, and H. Hashim,

“Deep learning-based intrusion detection system for detecting IoT botnet attacks: A review,” IEEE Access, early

access, 2025.

[21] H. Kheddar, “Transformers and large language models for efficient intrusion detection systems: A comprehensive

survey,” Information Fusion, 2025, Art. no. 103347.

[22] S. Jamshidi, K. W. Nafi, A. Nikanjam, and F. Khomh, “Evaluating machine learning-driven intrusion detection

systems in IoT: Performance and energy consumption,” Computers & Industrial Engineering, vol. 204, 2025, Art.

no. 111103.

[23] S. K. Erskine, “Real-time large-scale intrusion detection and prevention system (IDPS) CICIoT dataset traffic

assessment based on deep learning,” Applied System Innovation, vol. 8, no. 2, 2025, Art. no. 52.

[24] A. Barve, A. Malviya, V. Ranjan, R. Jeet, and N. Bhosle, “Enhancing detection rates in intrusion detection systems

using fuzzy integration and computational intelligence,” Computers & Security, 2025, Art. no. 104577.

[25] https://research.unsw.edu.au/projects/unsw-nb15-dataset

