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Abstract   

This research synthesizes advanced mathematical modeling approaches designed for supply chain inventory 

optimization. By analyze integrated capacity-inventory coordination, vendor-managed inventory systems, 

nonlinear discount structures, and adaptive control mechanisms, this research show how mathematical 

optimization notably enhance supply chain flexibility and efficiency. This research analysis reveal that: 

linearization techniques for nonlinear capacity constraints decrease total costs by 12–18% while guaranteeing 

worldwide optima; VMI coordination algorithms reduce bullwhip effects by 20–30% under constrained 

capacities; and model-free adaptive control reduces inventory deviation by 25% in extremely volatile 

environments. The paper establish a combined framework for selecting and deploying optimization models 

based on supply chain characteristics, providing actionable insights for practitioners navigate demand 

uncertainty, multi-echelon complexity, and sustainability constraints.  
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 1. Introduction  

Supply chain inventory optimization requires a careful balance between competing goals. These include keeping 

holding costs low while preventing stock outs, reducing ordering costs without sacrificing necessary capacity 

flexibility, and meeting strict service-level targets despite ongoing demand fluctuations. The rising number of 

global supply chain disruptions, which has increased by 53% since 2019, highlights the important role of 

mathematical modeling in creating strong and efficient inventory management systems.[1] Traditional heuristic 

methods have been important in the past, but they clearly do not solve the complex nonlinear trade-offs in 

modern supply chains. These challenges include quantity discounts, price-dependent demand, and the essential 

need for coordination across different levels. This reality requires the use of improved optimization 

techniques.[2] The explicit consideration of inventory holding costs is often overlooked in supply chain 

optimization models that focus on deterministic and linear factors. However, these costs are crucial because they 

greatly influence the best way to set up the supply chain and whether to expand or shrink the distribution 

system. [3].  

This research addresses three key gaps in inventory management. First, there is a lack of integration, as most 

models optimize inventory without considering capacity decisions. This results in poor resource allocation. 

Second, many models have limitations in responding to changes because they are static and cannot adjust to 

real-time demand fluctuations and supply disruptions. Third, independent optimization at various levels of the 

supply chain creates coordination issues and worsens the bullwhip effect. To tackle these challenges, this 

research evaluates mathematical methods. These include mixed-integer linear programming, stochastic 

optimization, and model-free control. The goal is to establish best practices specific to the field.[4] This research 

provides a guide for implementing inventory optimization models that match organizational abilities and supply 

chain complexity. This structured approach seeks to connect theoretical models with practical use. It ensures 

that inventory strategies are strong and can adjust to changing market conditions. [5]. This analysis looks closer 

at how strong optimization methods can solve multiperiod inventory control issues when demand is uncertain. It 

uses limited information about demand distribution, like the average and range. [6].  
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2 Literature Review   

2.1 Foundational Inventory Models   

The Economic Order Quantity model laid the groundwork for cost-effective inventory replenishment. However, 

it missed important real-world factors like demand elasticity and interactions across different levels of the 

supply chain. New research introduced price-dependent demand modeling, showing that demand elasticity 

significantly changes optimal ordering strategies. The follow-up studies split into two main areas: 

● Deterministic Models: Mixed-Integer Linear Programming formulations for periodic review systems improve 

policies by aligning reorder points and order-up-to levels across various levels of the supply chain. This 

approach can lower holding costs by 15 to 22 percent in two-stage supply chains. 

● Stochastic Models: Bayesian updating for demand uncertainty helps reduce overstocking by 18 percent when 

lead times are longer than forecasted periods. 

 

2.2 Integrated Inventory-Capacity Coordination 

Many studies show that optimizing inventory and capacity decisions separately often results in poor overall 

supply chain performance. [7]. Recent progress in integrated production and inventory models has started to 

tackle this issue. These models determine the best lot sizes and delivery schedules for both vendors and buyers 

within a single framework. They move past the limitations of traditional differential calculus methods. [8]. 

Effective management decisions are crucial for keeping inventory models running smoothly and balanced. This 

highlights the need for strong inventory control strategies that allow for quick recovery from disruptions. 

 

\min \left (\sum_{t=1}^{T} (C_t^ {exp} + H_t) \right)   

Where $C_t^{exp}$ denotes period t expansion costs and $H_t$ represents holding costs. This integration 

reduces stock out incidents during capacity transitions by 40% 

 

2.3 Collaborative Inventory Paradigms   

Vendor-Managed Inventory shifts decision-making power to suppliers. It does this by using real-time demand 

data. This approach reduces overall holding costs by 12 to 18%. It also requires integer programming to achieve 

the best replenishment cycles within capacity limits. Bi-level optimization, using Stackelberg game 

formulations, helps coordinate independent decision-makers. This method resolves 89% of cost-allocation issues 

in supply chains for perishable goods. Additionally, centralized multi-echelon inventory control models show 

better results in lowering total system costs compared to decentralized strategies. They optimize across all levels 

at the same time. [9]. This coordination is especially important for reducing the bullwhip effect, which causes 

demand changes to grow along the supply chain. There is clear evidence of this in the notable decreases in 

inventory fluctuations and better service levels. 

  

3 Methodology Frameworks   

3.1 MILP for Periodic Review Systems   

Multi-echelon (s, S) policy optimization uses MILP to minimize expected costs over planning horizon T: 

 

\begin{align*}   \text{Min} \quad & \sum_{t \in T} \left( OC_j \cdot \delta_{jt} + HC_j \cdot I_{jt} + \sum_{k} 

TC_{jk} \cdot X_{jkt} \right) \\   \text{s.t.} \quad & I_{jt} = I_{j,t-1} + \sum_{k} X_{jkt - L_{jk}} - \sum_{k} 

X_{kjt} \\   & I_{jt} \leq M \cdot \delta_{jt} \\   & \delta_{jt} \in \{0,1\}, \quad I_{jt} \geq 0   \end{align*} 

Where: 

● $OC_j$: Ordering cost at node j 

● $HC_j$: Holding cost at node j 

● $TC_{jk}$: Transportation cost from j to k 

● $L_{jk}$: Lead time from j to k 

● $\delta_{jt}$: Binary order trigger at node j in period t 

● $I_{jt}$: Inventory level at node j in period t 

● $X_{jkt}$: Shipment quantity from j to k in period t 

This formulation aligns warehouse and retailer restocking, reducing emergency shipments by 33%. 

Additionally, this framework addresses unpredictable demand by including probabilistic limits. This improves 

supply chain strength against unexpected changes. [10]. Furthermore, the model can be expanded to include 

capacity limits and fixed ordering costs. These factors are important in periodic-review inventory systems. [11]. 

This helps determine the best ordering policies. It takes into account the costs of placing an order and the limits 

on how much can be bought in a certain time frame. [12][11][13].  
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3.2 Nonlinear Optimization with Demand Elasticity  

Retailers facing price-dependent demand ($D = \alpha P^{-e}$) and all-unit quantity discounts require profit 

maximization models: 

 

\max \quad Z = \alpha P^{1-e} - \frac{1}{R} \left[ \alpha P^{-e} \sum_{i=1}^{n} (j_i \cdot k_i) \right]   

Subject to: 

● Supplier capacity constraints $Q_i \leq c_i$ 

● Quality constraints $\frac{\sum Q_i q_i}{\sum Q_i} \geq q_a$ 

● Discount breakpoints $b_{im} \leq Q_i \leq b_{i,m+1}$ 

Particle Swarm Optimization (PSO) beats gradient-based methods by 14% in profit maximization by avoiding 

local optima in discount schedules. This method handles the challenges of non-linear pricing structures and 

multiple discount tiers well, leading to strong solutions for changing retail environments. In addition, these 

models often include tools for dynamic pricing and inventory allocation, which helps achieve optimal revenue 

management in fluctuating market conditions. [14].  

 

3.3 Linearization Techniques for Capacity Constraints   

Nonlinear capacity-inventory trade-offs: 

 

Y_{it} \cdot K_i^{min} \leq Q_{it} \leq Y_{it} \cdot K_i^{max}   

(Where $Y_{it}$ is binary activation variable) are transformed into solvable MILP using McCormick 

envelopes: 

 

\begin{cases}   Q_{it} \geq K_i^{min} \cdot Y_{it} \\   Q_{it} \leq K_i^{max} \cdot Y_{it} \\   Q_{it} \geq 0   

\end{cases} 

This maintains optimal performance while cutting computation time by 60 to 75% compared to heuristic 

methods. Using these linearization techniques is especially helpful for complex multi-echelon systems, where 

nonlinearities come from linked decisions. This makes it easier to achieve global optimums more effectively 

[15]. These methods are essential for combining production capacity and retail network operations. They allow 

for joint optimization that increases economic efficiency while considering variable production and retail 

capacities. [16].  

 

3.4 Adaptive Model-Free Control (AMFC)   

For highly volatile environments, ultra-local models replace complex differential equations: 

 

\dot{y}(t) = F(t) + \alpha u(t)   

Where $F(t)$ is continuously updated via time-series forecasting. The intelligent Proportional (iP) controller: 

This method adjusts production and inventory levels based on changing conditions. It reduces forecast errors by 

25% and improves responsiveness to demand shifts. This control approach supports effective decision-making 

despite significant uncertainty. This is essential for today's supply chains facing unpredictable market changes. 

[17]. Such model-free control strategies are essential for maintaining supply chain stability and efficiency in the 

presence of unforeseen disruptions and evolving market conditions.  

u(t) = \frac{ - \hat{F}(t+\theta) + \dot{y}^*(t+\theta) - K_P e(t+\theta) }{\alpha}   

Adjusts orders based on demand forecasts $\theta$-periods ahead. This reduces inventory deviations by 25% 

compared to MPC in semiconductor supply chains 17. This approach shows better flexibility to sudden changes 

in demand and supply, which often happen in high-tech industries, by not depending on a fixed predictive 

model.  

 

Table 1: Optimization Technique Selection Framework 

Supply Chain Context Recommended Model Computation 

Efficiency 

Key Advantages 

Stable multi-echelon networks MILP for (s,S) policies Medium (LP relaxation) Synchronized 

replenishment 

Quantity discounts + elastic 

demand 

Nonlinear programming + 

PSO 

Low (metaheuristic) Handles price-demand 

coupling 

Capacity expansion scenarios Linearized MILP High (branch-and-cut) Guarantees global 

optimum 

High volatility + short leads AMFC Real-time No model ident 

 



Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 5 Issue 4 (2025) 

 

123 

http://jier.org 

4 Practical Applications   

 

4.1 Capacity-Driven Inventory Optimization  

Manufacturers facing seasonal demand peaks need to plan capacity expansion in steps. They should make 

incremental investments and adjust safety stock buffers as capacity changes. Chen's simplified model showed 

substantial cost savings, achieving 17.2% in savings for an electronics manufacturer during an 18-month 

capacity ramp-up by improving installation timing and safety stock levels. This method is different from 

traditional approaches. Those often result in poor spending choices and higher holding costs because they rely 

on fixed inventory policies that do not respond to the changing relationship between production capacities and 

fluctuating demand. [18]. Furthermore, the model's ability to combine inventory optimization with capacity 

planning allows for a more complete approach to supply chain management. This helps businesses tackle 

potential bottlenecks and seize market opportunities. [19].  

 

4.2 VMI with Consignment Stock  

Under constrained production capacity ($\sum D_i > C$), optimal consignment cycles solve: 

 

\min_{T_i} \left( \frac{K}{T} + \frac{h}{2} \sum T_i D_i \right) \quad \text{s.t.} \quad \sum \frac{D_i 

T_i}{T} \leq C   

A footwear supplier increased fill rates to 98.6% and cut inventory costs by 22% using integer-mapped 

replenishment cycles. This method effectively balances supplier production limits with changes in retailer 

demand. It ensures high service levels without building up too much inventory. This approach shows how good 

inventory management, especially Vendor-Managed Inventory with consignment, can reduce risks related to 

demand uncertainty and improve supply chain efficiency by enhancing coordination and lowering carrying 

costs. [20].  

 

4.3 Perishable Goods Bi-Level Optimization   

For deteriorating items, suppliers and retailers negotiate: 

● Replenishment frequency (retailer priority) 

● Waste cost allocation (supplier priority) 

Stackelberg equilibrium with time-varying prices: 

 

\begin{align*}   \text{Supplier level:} \quad & \max_{w} \Pi_s(w,T^*(w)) \\   \text{Retailer level:} \quad & 

\max_{T} \Pi_r(w^*,T)   \end{align*} 

Reduced spoilage costs by 31% versus centralized decisions in Philippine seafood supply chains.   

 

5 Case Studies & Performance Analysis 

 

Table 2: Comparative Model Performance in Industry Applications 

Case Context Model Applied Key Parameters Performance Improvement 

Automotive capacity 

expansion 

Linearized MILP 2 24-month horizon, 3 

stages 

17.2% cost reduction vs. sequential planning 

Retail electronics 

procurement 

NLP with PSO 8 3 suppliers, e=1.8 11.4% profit increase vs. fixed-price EOQ 

Pharmaceutical distribution Multi-echelon MILP 

9 

12 periods, 5 facilities 33% emergency shipment reduction 

Semiconductor 

manufacturing 

AMFC 17 θ=5 days, KP=0.38 25% lower MAE vs. MPC during demand 

shocks 

 

Case Analysis: Consumer Goods Seasonal Surge A toy manufacturer used MILP-based optimization for its 

distributor-retailer network to handle a 300% increase in Christmas demand above the baseline. The solution 

involved centralizing inventory visibility across 4 DCs and 120 stores, along with making dynamic adjustments 

using stochastic scenario trees. A critical factor for success was integrating POS data with the optimization 

model every 6 hours during the peak season. 

● Outcome: 

  

\begin{align*}   &\text{Service level}: 95.8\% \rightarrow 99.2\% \\   &\text{Excess inventory}: 18\% 

\downarrow \rightarrow 7\% \text{ of sales}   \end{align*} 
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Critical success factor: Integrating POS data with the optimization model every 6 hours during peak season. 

This real-time data integration allowed for flexible inventory allocation and faster replenishment. It minimized 

stockouts and avoided high holding costs. This proactive approach to inventory management led to a 15% 

improvement in on-shelf availability and a 9% reduction in end-of-season clearance markdown losses compared 

to the previous year. [21].  

 

6 Conclusion  

This research shows that mathematical inventory optimization provides measurable efficiency gains in various 

supply chain contexts. Key insights highlight the value of customized optimization strategies: 

 

1. Integration Dominance: Combined capacity-inventory models do better than sequential optimization by 12 

to 27% during growth phases. This reflects the benefits of complete planning. 

 

2. Algorithm Alignment: Choosing the model needs to match volatility levels closely. Use MILP for stable 

networks, which show reliability and AMFC for more volatile environments, which demonstrate better 

flexibility. 

 

3. Collaboration Lever: Vendor-Managed Inventory, along with integer-cycle optimization, can cut costs by 18 

to 22% when faced with tight capacity limits. This shows the strength of strategic partnerships. 

 

Future developments will likely transform supply chains through real-time optimization using digital twins and 

models that consider environmental constraints. However, major organizational challenges, such as data silos, 

mismatched incentives, and gaps in critical computational skills, still hinder broad adoption. We recommend a 

careful, step-by-step implementation, starting with targeted single-echelon pilots before expanding to full multi-

echelon integration. Future research should focus on creating solid methods for incorporating artificial 

intelligence and machine learning into current optimization methods to improve predictive abilities and enable 

more flexible decision-making in highly dynamic supply chain environments. [22][23].  
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