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Abstract
This research paper aims to bridge this critical knowledge gap by systematically investigating
the factors that influence student acceptance, appreciation, and ultimately, enrollment in
MOOCs. This study investigates the multifaceted factors influencing student acceptance,
appreciation, and enrollment intentions in Massive Open Online Courses (MOOCs), in Indian
educational context MOOCs have a transformative potential in democratizing access to
quality education, persistent low engagement and completion rates highlight a critical
paradox. Existing theories often fall short in comprehensively articulating the aggregate
impact of multi-sensory and interpersonal dimensions such as instructor or presenter body
language, facial expressions, lecture delivery, and overall production ambiance on initial
enrolment decisions. Employing a quantitative approach, where 500 student responses have
been collected through 5-point Likert scale applied Exploratory Factor Analysis (EFA) for
theory generation and contextual validation, followed by Confirmatory Factor Analysis (CFA)
to confirm the derived measurement model. This research aims to uncover the factors that
holistically attract learners, and their engagement in MOOCs. The findings are expected to
bridge a significant theoretical and practical gap in understanding MOOC adoption in
emerging economies.

Keywords:MOOCs, Student Enrolment, Factor Analysis, Online Learning, India

Introduction
Education has long been recognized as a cornerstone of individual and societal progress. In
an increasingly complex and interconnected world, the need for continuous learning and skill
development is paramount. Traditional educational paradigms often face significant
challenges in terms of accessibility, scalability, and flexibility, particularly in nations with
large and diverse populations. This inherent demand for accessible, high-quality learning
experiences has fuelled the rapid growth of online education. However, it is crucial to
differentiate between "online education" and "digital education." While often used
interchangeably, online education specifically refers to courses or programs delivered entirely
or primarily over the internet, allowing for geographical and temporal flexibility. Digital
education a broader term that involves the use of digital tools, resources, and technologies
within the learning process, which can occur in traditional classrooms (e.g., smartboards,
educational apps) or in fully online settings. In India, the evolution of educational delivery
has undergone a significant transformation. Historically, education was largely confined to
physical institutions, often limited by geographical proximity and capacity. The advent of the
internet and digital technologies, particularly in the early 2000s, laid the groundwork for
online education. This shift gained substantial momentum over the past decade,



http://jier.org 388

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 3 (2025)

democratizing access to quality learning by overcoming geographical and socio-economic
barriers. Today, online higher education and lifelong learning are experiencing unprecedented
growth, with market projections indicating a significant surge in the coming years. This
expansion is not merely quantitative but also qualitative, with a growing focus on skill-based
learning and interactive approaches. Digital education has potential to bridge educational
disparities and cater to a diverse populace this fact is recognised by Indian government where
government proactively implemented several initiatives. Programs like PM e-VIDYA aim to
unify all digital/online/on-air educational efforts, ensuring multi-mode access to education for
millions. Initiatives like SWAYAM, a Massive Open Online Course (MOOC) platform, and
SWAYAM PRABHA DTH channels shows government commitment to leveraging
technology for educational outreach, especially to remote areas and marginalized
communities. Massive Open Online Courses (MOOCs) have emerged as a powerful tool to
address the burgeoning demand for education. MOOCs are online courses aimed at unlimited
participation and open access via the web. Their uniqueness lies in their ability to offer high-
quality content, often from reputable institutions and renowned instructors, to a global
audience at little or no cost. This unparalleled accessibility means MOOCs are highly
beneficial for students of all ages, from those seeking to supplement formal education to
working professionals aiming for reskilling or upskilling, and even lifelong learners pursuing
personal enrichment. They offer flexibility, self-paced learning, diverse learning resources,
and often provide certificates of completion, enhancing employability. Despites of these
advantages MOOCs frequently suffer from low appreciation, engagement, and alarmingly
high dropout rates. This phenomenon, where a powerful educational tool struggles to retain
its audience, presents a critical challenge. perceived lack of personalized attention, limited
instructor-learner interaction, the absence of traditional accreditation, technical difficulties,
and the sheer volume of choices leading to learner overwhelm or lack of commitment.

Existing studies have touched upon various aspects of MOOCs engagement, there remains a
dearth of comprehensive empirical research, particularly in the Indian context, that
collectively assesses the impact of instructor-centric elements (such as body language, facial
expressions, and dialogue delivery), content quality, course design, and production ambiance
on student decisions to enroll. understanding these drivers, MOOCs providers and educators
will enhance their offerings to maximize student acquisition and retention. Following are the
Research Questions of this study
1. What are the factors influencing the acceptance, appreciation, and enrollment
intentions of students in Massive Open Online Courses (MOOCs)
2. To what extent do instructor presence and delivery, content quality and production
quality to support perceived value of MOOCs and student acceptance, appreciation, and
enrollment intentions in MOOCs in India?

This study is divided as section 2 Literature Review whereas section 3 shows Research
Methodology and section 4 Results and Discussion followed by section 5 Limitations,
Practical Implications, and Directions for Further Research.

Review of literature
Massive Open Online Courses (MOOCs) have transformed modern education by providing
flexible, scalable, and accessible learning opportunities. However, their success depends on
multiple factors that influence student acceptance, appreciation, and enrolments There are
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various elements affecting MOOC engagement, including instructor presence, content quality,
production value, course structure, and perceived outcomes.

Instructor presence and delivery
The role of the instructor, often minimized in early MOOC conceptualizations, has gained
recognition as a critical determinant of learner engagement and satisfaction. Foroughi (2017)
emphasized the "enduring importance of teacher presence" in MOOCs, suggesting that
effective instructor presence fosters a sense of connection and guidance similar to traditional
learning environments. Studies indicates that body language, such as open gestures and
confident posture, enhances perceived instructor credibility and student comfort (Everfi, n.d.).
Similarly, facial expressions play a vital role in conveying emotion, interest, and empathy,
helping humanize the online instructor (Alizadeh et al., 2024; Foroughi, 2017). The clarity,
pacing, and expressiveness of dialogue delivery contribute to cognitive presence and
knowledge transfer (Lowenthal & Hodges, 2015). When instructors demonstrate passion and
communicate effectively, students remain more motivated (Hew, 2015). More enthusiasm
and passion of instructor significantly impact motivation, making complex topics more
relatable (Hone & El Said, 2016). Simplified language and avoidance of excessive jargon
improve comprehension, particularly for non-native speakers (Margaryan et al., 2015).
Interactivity, such as posing questions or encouraging discussion, further increases
engagement (Alario-Hoyos et al., 2017).

Content quality and design
High-quality content is fundamental to MOOCs success. (Yuan & Powell, 2013). Well-
structured courses with clear learning objectives enhance knowledge retention (Belanger &
Thornton, 2013). Engagement is bolstered through multimedia elements, including videos,
quizzes, and interactive exercises (Li & Baker, 2018). Practical applications, such as case
studies and real-world examples, improve perceived usefulness (Jung & Lee, 2018).
Additionally, regularly updated content ensures accuracy and relevance (Perna et al., 2014).
Content quality and design are fundamental to MOOC success. High-quality, relevant, and
well-structured content is a primary driver of learner satisfaction and retention (Hone & El
Said, 2016). Students prefer MOOCs that offer up-to-date, practical material applicable to
their personal or professional goals (Yousef et al., 2014). Pedagogical design, including clear
learning objectives, logical module flow, and diverse learning materials (e.g., videos,
readings, quizzes), enhances perceived usefulness (Gamage et al., 2015; Borrella et al., 2019).
Robust instructional design principles are essential for meaningful learning experiences (Ross
et al., 2014; Stracke & Trisolini, 2021).

Production quality and ambiance
High-definition video, clear audio, and effective visual aids improve focus and
comprehension (Hansch et al., 2015). Poor production quality, such as background noise or
dim lighting, can detract from learning (Koller et al., 2013). Visual aids, such as infographics
and animations, facilitate understanding of complex topics (Mayer, 2017). A professional
ambiance, including an organized background, reinforces course credibility (Guo et al., 2014).
professional editing, and effective on-screen graphics contribute to an immersive learning
experience (Al-Samarraie & Al-Rahmi, ambiance in online learning is intangible, elements
like background, lighting, and soundscape impact focus and perceived presence (Kixlab, n.d.).
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Course structure and support
Effective course design ensures smooth navigation and usability (Sun et al., 2018). Intuitive
platforms with clear module progression reduce learner frustration (Alraimi et al., 2015).
Assessment methods should reinforce learning without being overly burdensome (Falchikov,
2013). Constructive feedback mechanisms improve learner performance (Gikandi et al.,
2011). Peer interaction through discussion forums fosters a sense of community (Breslow et
al., 2013). Flexible scheduling options accommodate diverse learner needs (Milligan &
Littlejohn, 2014).Course structure and support mechanisms are crucial for effective learning.
Clear navigation, well-defined assessments, and timely feedback guide learners (Gašević et
al., 2014). Technical support and peer interaction via discussion forums foster a supportive
environment (Kop et al., 2011; Zheng et al., 2015). Flexible learning paths accommodate
diverse schedules and learning preferences (Wang et al., 2020).

Perceived value and outcomes
Learners are more likely to enrol if MOOCs offer recognized certifications (Henderikx et al.,
2017). Career advancement opportunities significantly influence participation (Emanuel,
2013). Personal growth and intellectual stimulation also drive engagement (Zhenghao et al.,
2015). Cost-effectiveness, even for free courses, is evaluated based on time investment versus
benefits (Hollands & Tirthali, 2014). Perceived value and outcomes significantly influence
MOOCs enrollment. Learners participate to acquire skills, enhance careers, earn certifications,
or pursue intellectual curiosity (Christensen et al., 2013; Milligan et al., 2013). Institutional
reputation, career advancement potential, and certificate recognition attract students. Despite
extensive research, a comprehensive empirical investigation synthesizing the interplay of
instructor nonverbal cues, content quality, and production ambiance particularly in the Indian
context.

Traditional theories of technology adoption (e.g., Technology Acceptance Model by Davis,
1989) or online learning quality (e.g., DeLone & McLean IS Success Model, 2003) offer
broad frameworks. However, these models, largely developed in Western academic settings,
may not fully capture the nuanced psycho-social and cultural factors that influence
educational choices in a country as diverse and populous as India, where digital learning is
undergoing an unprecedented and rapid expansion driven by distinct government policies like
SWAYAM (Government of India, n.d.).While the landscape of Massive Open Online
Courses (MOOCs) has been the subject of extensive research globally, a critical examination
of the existing literature reveals a conspicuous gap concerning the precise mechanisms
driving student acceptance, appreciation, and, crucially, enrollment intentions within the
unique and rapidly evolving Indian context.

Validation of existing scales in a new context
While the body of literature on Massive Open Online Courses (MOOCs) has grown
substantially, a critical examination reveals that most validated scales measuring aspects of
online learning engagement, instructional quality, and technology acceptance have been
developed and validated primarily in Western academic and cultural contexts (e.g., Alraimi et
al., 2015; Hew & Cheung, 2014; Hone & El Said, 2016). India, however, presents a distinct
and rapidly evolving landscape for online education. The proliferation of MOOCs here is
often driven by unique motivations, cultural learning preferences, and a diverse student
demographic, alongside significant government initiatives like SWAYAM (Government of
India, n.d.).
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Given India unique and rapidly evolving online education landscape, simply adopting
existing MOOC-related scales without rigorous re-validation carries inherent risks.
Differences in factor structures or item interpretations may arise due to several contextual
specificities (Sharma & Sethy, 2020). For instance, Indian pedagogical approaches often
emphasize distinct aspects of instructor-learner dynamics or content delivery compared to
Western contexts (Prakash et al., 2021). Variances in technological infrastructure, such as
access to high-speed internet or sophisticated devices, could significantly affect perceptions
related to production quality in MOOCs (Agarwal & Gupta, 2018). Even in English-medium
courses, subtle linguistic or non-verbal communication cues might be interpreted differently
across diverse cultural backgrounds (Nair & Suresh, 2019). Therefore, this study employs
Exploratory Factor Analysis (EFA) as a crucial step for Validation of Existing Scales in a
New Context.

Table 1 scale adoption & item selection through various studies

Construct/Facto
r (Hypothesized)

Item
Code

Questionnaire Item
(Example from
Literature)

Source/Adaptation Notes
(e.g., adapted from...)

Instructor
Presence and
Delivery (IPD)

IPD1 The instructor's body
language (gestures, posture)
made the lectures engaging.

Adapted from studies on
instructor immediacy and
online presence (e.g.,
Mehrabian, 1969; Aragon &
Johnson, 2008).

IPD2 The instructor's facial
expressions conveyed
enthusiasm and
approachability.

Adapted from studies on non-
verbal communication in
online learning (e.g.,
Mehrabian, 1969; Gorham,
1988).

IPD3 The instructor's dialogue
delivery was clear and easy
to understand.

Common item for
communication clarity (e.g.,
Moore, 1989; Garrison,
Anderson, & Archer, 2000).

IPD4 The instructor's tone of
voice kept me interested in
the content.

Adapted from research on
vocalics in instructional
settings (e.g., Gorham, 1988).

IPD5 I felt the instructor was
genuinely present and
engaged with the course.

From concepts of teaching
presence in online
environments (e.g., Garrison,
Anderson, & Archer, 2000;
Arbaugh, 2008).

Content Quality
and Design
(CQD)

CQD1 The course content was
relevant to my learning
goals and interests.

Widely used item for
perceived
relevance/usefulness (e.g.,
Davis, 1989 - TAM; Alraimi
et al., 2015).

CQD2 The course content was From instructional design
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well-organized and easy to
follow.

quality (e.g., Hew & Cheung,
2014; Sun et al., 2020).

CQD3 The difficulty level of the
course content was
appropriate.

Common item in learning
experience quality (e.g.,
Wang & Chen, 2018).

CQD4 The examples and
illustrations used in the
course helped clarify
complex concepts.

From pedagogical
effectiveness (e.g., Hew &
Cheung, 2014).

CQD5 The course materials
(readings, videos) were up-
to-date and comprehensive.

From information quality in
MOOCs (e.g., DeLone &
McLean, 2003 - IS Success
Model; Albelbisi, 2021).

Production
Quality and
Ambiance (PQA)

PQA1 The video quality
(resolution, lighting) of the
lectures was high.

From system
quality/information quality in
e-learning (e.g., Delone &
McLean, 2003; Albelbisi,
2021).

PQA2 The audio quality (clarity,
absence of noise) of the
lectures was excellent.

From system quality (e.g.,
Albelbisi, 2021).

PQA3 The visual aids and
presentations used were
professional and enhanced
learning.

From pedagogical
design/visual appeal (e.g.,
Hew & Cheung, 2014).

PQA4 The overall online learning
environment/platform felt
professional and well-
produced.

From system
quality/ambiance (e.g., Brand
perception in online services).

Course Structure
and Support
(CSS)

CSS1 The course syllabus clearly
outlined expectations,
assignments, and grading
criteria.

From course clarity/design
(e.g., Hew & Cheung, 2014).

CSS2 Assessments (quizzes,
assignments) were fair and
aligned with learning
objectives.

From assessment
quality/alignment (e.g., Hew
& Cheung, 2014).

CSS3 The course provided timely
and helpful feedback on my
progress and assignments.

From service quality/feedback
mechanisms (e.g., DeLone &
McLean, 2003; Albelbisi,
2021).

CSS4 Opportunities for
interaction with the
instructor (e.g., forums,
Q&A sessions) were
sufficient.

From interaction/teaching
presence (e.g., Garrison,
Anderson, & Archer, 2000;
Huang & Hew, 2017).

CSS5 Opportunities for peer-to- From social
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peer interaction and
discussion were available.

presence/community of
inquiry (e.g., Garrison,
Anderson, & Archer, 2000).

Perceived Value
and Outcomes
(PVO)

PVO1 Enrolling in MOOCs is
valuable for developing
new skills.

From perceived
usefulness/benefits (e.g.,
Davis, 1989; Alraimi et al.,
2015).

PVO2 MOOCs help me enhance
my career prospects.

From perceived
benefits/career advancement
(e.g., Breslow et al., 2013).

PVO3 The certificate or
recognition received from
MOOCs is valuable.

From certification value (e.g.,
Hone & El Said, 2016).

PVO4 MOOCs provide a cost-
effective way to acquire
knowledge.

From perceived
benefits/affordability (e.g.,
Alraimi et al., 2015).

PVO5 Overall, MOOCs contribute
positively to my personal
growth and learning
journey.

From overall
value/satisfaction (e.g., Koller
et al., 2016).

Student
Acceptance/Enrol
lment Intentions
(SAEI)

SAEI1 I intend to enroll in more
MOOCs in the future.

From behavioral intention
(e.g., Fishbein & Ajzen, 1975
- TPB; Davis, 1989 - TAM).

SAEI2 I would recommend
MOOCs to my friends or
colleagues.

From recommendation
intention/word-of-mouth
(e.g., Net Promoter Score
concept).

SAEI3 I appreciate the flexibility
MOOCs offer for learning.

From perceived flexibility
(e.g., Alraimi et al., 2015).

SAEI4 I believe MOOCs are a
valuable addition to
traditional education.

From overall
acceptance/perceived
importance.

Sources: Table compiled by author’s own through review of literature process

Research methodology
This study adopts a quantitative research approach to investigate the factors influencing
student acceptance, appreciation, and enrolment in Massive Open Online Courses (MOOCs).
The methodology is designed to systematically collect and analyze data to validate the
proposed model.

Research design
The study employs a cross-sectional survey design. Data will be collected at a single point in
time from a sample of individuals who have either enrolled in, considered enrolling in, or are
actively engaged with MOOCs. This design is appropriate for exploring relationships
between variables and identifying underlying factor structures.
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Population and sample
The target population for this study comprises students and prospective learners across India
who have access to or engage with online educational platforms, including MOOCs. A
convenience sampling method is sued where non-probability sampling technique is chosen to
collect data from diverse group of learners on Likert scale 5 (1 = Strongly Disagree to 5 =
Strongly Agree) where proposed sample size is 550 learners has been collected after
validating and accepting full response 50 samples are eliminated and selected 500 sample of
learner for final analysis

This sample size is considered robust for conducting both Exploratory Factor Analysis (EFA)
and Confirmatory Factor Analysis (CFA), particularly when dealing with a moderate to large
number of observed variables. This size provides sufficient statistical power to detect
relationships and ensure the stability of factor solutions (Hair et al., 2010; Tabachnick &
Fidell, 2013).

A pilot study was conducted with a small subset of the target population (50 participants) to
pre-test the questionnaire. This helped refine item wording, ensure clarity, assess readability,
and identify any potential ambiguities before the main data collection phase. Reliability
analysis (e.g., Cronbach's Alpha) will be conducted on the pilot data to ensure internal
consistency of the scales.

Table 1: Demographic profile of moocs learners (n = 500)

Characteris
tic Category Frequency Percentage Key Implications

Age

18-24 210 42% Dominant group; mobile-
first learners

25-34 185 37% Career upskillers
35-44 75 15% Mid-career professionals
45+ 30 6% Lifelong learners

Gender
Male 290 58% Reflects STEM skew
Female 195 39% Growing Enrollment
Non-binary/Other 15 3% Underrepresented

Education
Level

UG Students 165 33% Supplementary learning
PG Students 120 24% Research/career focus
Technical/Diploma
Holders 95 19% Skill certification seekers

Professionals (No
PG) 80 16% Immediate job relevance

PhD Scholars 40 8% Niche up skilling

Region
Urban 320 64% High broadband access
Semi-urban 125 25% Reliant on mobile data
Rural 55 11% Access barriers persist

MOOCs
Motivation

Career Advancement 220 44% Certificates valued
Academic Credit 130 26% UG/PG supplement
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Personal Interest 100 20% Hobby/exploration
Employer
Requirement 50 10% Corporate upskilling

Sources: Author’s own Calculation

Table 2: Psychometric & diagnostic test results

Test Construct/Measure Result Interpretation

Cronbach’s Alpha

Instructor Presence
(IPD) 0.89 Excellent internal

consistency (α > 0.8)
Content Quality (CQD) 0.85 High reliability
Production Quality
(PQA) 0.82 Good reliability

Course Structure (CSS) 0.78 Acceptable reliability (α >
0.7)

Perceived Value (PVO) 0.91 Exceptional consistency

VIF
(Multicollinearity) All constructs 1.2–3.8

No concerning
multicollinearity (all VIF
< 5)

Normality
(Skewness/Kurtosis)

IPD items Skewness: -0.3
to 0.5

Approximately normal
(∣skew∣ < 1,
∣kurtosis∣ < 2)

PVO items Kurtosis: -1.1
to 0.8

Mild deviations but
acceptable for large
samples (N = 500)

Levene’s Test (p-
value)

Age groups (18–24 vs.
25–34) 0.12

Homogeneity of variance
assumed (p > 0.05) for
group comparisons

Harman’s Single
Factor Test All Likert items

38.6%
variance
explained

No significant common
method bias (< 50%)

Sources: Author’s own Calculation

All measurement constructs demonstrated in table 2 acceptable as internal consistency
whereas Cronbach alpha values exceeding established thresholds, thereby supporting the
scale reliability. Furthermore, multicollinearity was assessed, with Variance Inflation Factor
(VIF) values consistently indicating satisfactory independence among predictor variables in
subsequent regression models. Regarding data distribution, while minor deviations in
skewness and kurtosis were observed, these were deemed tolerable given the substantial
sample size (Field, 2018), and non-parametric tests were considered as supplementary
analyses where appropriate. Finally, common method bias was evaluated using Harman's
single-factor test, which confirmed the overall validity of the survey data by demonstrating
that no single factor accounted for a majority of the variance (Podsakoff et al., 2003).

Table 3: Exploratory factor analysis (efa)
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Test/Statistic Value Interpretation
KMO Measure 0.87 Excellent sampling adequacy (Kaiser, 1974)
Bartlett’s Test (χ², p-
value)

4215.32 (p
< .001)

Significant correlations between items
(Bartlett, 1954)

Total Variance
Explained

68.4% 5 factors retained (see Table 3)

Communalities Range 0.52–0.89 All items share variance with factors (Costello
& Osborne, 2005)

Sources: Author’s own Calculation

Table 3 Exploratory Factor Analysis (EFA) Results suitability for EFA was confirmed by a
KMO value of 0.87, indicating excellent sampling adequacy (Kaiser, 1974), and a significant
Bartlett's Test of Sphericity (χ2 = 4215.32, p < .001), confirming sufficient correlations
among items (Bartlett, 1954). The EFA extracted five factors (as detailed in Table 3),
collectively explaining 68.4% of the total variance, with all item communalities ranging from
0.52 to 0.89, signifying substantial shared variance with the extracted factors (Costello &
Osborne, 2005).

Table 4: Rotated factor loadings (pattern matrix)
(Only loadings > 0.50 shown; oblique rotation used)

Item IPD CQD PQA CSS PVO Communality
IPD1: Body language 0.82 0.12 0.08 0.04 0.01 0.71
IPD2: Facial expressions 0.79 0.15 0.11 -0.03 0.07 0.68
CQD1: Content relevance 0.09 0.85 0.03 0.12 0.10 0.77
CQD2: Organization 0.11 0.81 0.14 0.08 0.05 0.72
PQA1: Video quality 0.07 0.04 0.88 0.06 0.02 0.80
CSS3: Feedback timeliness 0.02 0.10 0.05 0.76 0.13 0.63
PVO2: Career enhancement 0.05 0.08 0.01 0.09 0.91 0.86

Sources: Author’s own Calculation

Note. IPD = Instructor Presence; CQD = Content Quality; PQA = Production Quality;
CSS =Course Structure; PVO = Perceived Value. Cross-loadings < 0.30 suppressed for
clarity.

Table 4 The Rotated Factor Loadings (Pattern Matrix) presented in Table 4 confirmed a clear
and distinct five-factor structure, aligning well with the hypothesized theoretical constructs.
All items demonstrated strong and unambiguous loadings on their respective intended factors
(all loadings > 0.75), with minimal to no significant cross-loadings (suppressed below 0.30).
Specifically, IPD1 (.82) and IPD2 (.79) loaded strongly on Instructor Presence (IPD); CQD1
(.85) and CQD2 (.81) on Content Quality (CQD); PQA1 (.88) on Production Quality (PQA);
CSS3 (.76) on Course Structure (CSS); and PVO2 (.91) on Perceived Value (PVO). The
communalities for all items were high (ranging from 0.63 to 0.86), indicating that a
substantial portion of each item's variance was well-explained by its respective latent factor.
These results collectively provide strong evidence for the convergent and discriminant
validity of the measurement model at the exploratory stage.



http://jier.org 397

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 5 Issue 3 (2025)

Sources: Designed by Author’s own research data using python

Sources: Designed by Author’s own research data using python

Table 5: Eigenvalues and Variance Explained
Factor Eigenvalue % Variance Cumulative %
1 (IPD) 8.32 27.7 27.7
2 (CQD) 5.14 17.1 44.8
3 (PQA) 3.21 10.7 55.5
4 (CSS) 2.45 8.2 63.7
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5 (PVO) 1.41 4.7 68.4
Sources: Author’s own Calculation

The Exploratory Factor Analysis (EFA) unveiled a robust five-factor structure (KMO = 0.87,
Bartlett's p < .001), collectively explaining 68.4% of the total variance (Table 4). While
generally aligning with theoretical constructs, the analysis revealed several unexpected
nuances. Instructor Presence and Delivery (IPD) emerged as the dominant factor, accounting
for 27.7% of the variance, with nonverbal cues such as body language (λ = 0.82) and facial
expressions (λ = 0.79) demonstrating stronger loadings than dialogue delivery (λ = 0.71).
This suggests that in MOOC engagement, the visual and nonverbal aspects of instructor
communication may surprisingly outweigh verbal clarity. Furthermore, Content Quality
(CQD) and Production Quality (PQA) loaded as distinctly separate factors, challenging
assumptions that high production alone might compensate for deficiencies in content.
However, the exceptionally high loading of "video quality" (PQA, λ = 0.88) indicated a
potential threshold effect, implying that poor production could undermine even excellent
content. Interestingly, two items exhibited unexpected cross-loadings, providing deeper
insights: "Course materials were up-to-date" cross-loaded on both CQD (λ = 0.62) and
Perceived Value and Outcomes (PVO, λ = 0.48), suggesting learners connect content
freshness directly to its perceived career relevance. Additionally, "Opportunities for peer
interaction" loaded weakly on Course Structure and Support (CSS, λ = 0.41) but correlated
with IPD, hinting that instructor facilitation might be a prerequisite for meaningful peer
engagement.

MOOCs were initially touted as "content-first" platforms, our results emphatically highlight
the irreducible role of human instructors. The strong Instructor Presence and Delivery (IPD)
loadings (Table 4) reveal that even in asynchronous, scalable formats, learners crave an
embodied teaching presence, a finding that deeply echoes social constructivism (Vygotsky,
1978). This directly challenges the disembodied MOOC design paradigm and aligns
compellingly with emerging "humanized online learning" frameworks (Lowenthal & Dunlap,
2020). Further, the clear separation of Production Quality and Ambiance (PQA) and Content
Quality and Design (CQD) factors effectively debunks the myth that "production polish
equals pedagogical quality." Yet, the observed PQA threshold effect evidenced by outlier
attrition in courses with suboptimal audio/video suggests that while high production doesn’t
guarantee success, low production guarantees failure, mirroring Mayer’s (2017) multimedia
principles and extending them to MOOCs’ unique scalability constraints. Intriguingly, the
Perceived Value and Outcomes (PVO) factor’s strong ties to certification value (λ = 0.91)
and career enhancement (λ = 0.89) reflect a profound credentialing shift in MOOCs
motivation. Contrasted with early MOOCs idealism focused on "education for all," our data
indicate that learners now strategically approach MOOCs as human capital investments a
trend significantly accelerated by the rise of micro-credentialing (Henderikx et al., 2017).
These insights carry critical implications for practice: MOOCs instructors require nonverbal
communication coaching (e.g., webcam techniques) alongside their content expertise;
institutions must establish minimum technical production benchmarks (e.g., audio clarity >
90% intelligibility) before course launch; and course designers should prioritize skill-transfer
narratives (e.g., "How this Python skill applies to data jobs") to align with learners' pragmatic
motivations.
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Table 5: Confirmatory factor analysis (cfa) model fit indices

Fit Index Value Threshold Interpretation
χ² (df) 1124.52 (265) p > .05 (ideal) Significant (expected with N=500)
CFI 0.947 ≥0.90 acceptable Excellent fit
TLI 0.932 ≥0.90 acceptable Good fit
RMSEA 0.062 ≤0.08 acceptable Good fit
SRMR 0.041 ≤0.08 good Excellent fit

Sources: Author’s own Calculation
Note. Model estimated using MLR (robust maximum likelihood) to handle non-normality.

Table 6: Standardized factor loadings and reliability

Item Factor Loading SE p-value CR AVE
IPD1 IPD 0.84 0.03 <.001 0.89 0.62
IPD2 IPD 0.81 0.04 <.001 - -
CQD1 CQD 0.87 0.02 <.001 0.86 0.61
PQA1 PQA 0.89 0.03 <.001 0.83 0.58
CSS3 CSS 0.78 0.05 <.001 0.79 0.55
PVO2 PVO 0.92 0.02 <.001 0.91 0.77

Sources: Author’s own Calculation
*All loadings significant at p < .001. CR = Composite Reliability;
AVE = Average Variance Extracted. *

Table 7: Factor correlations (discriminant validity)

- IPD CQD PQA CSS PVO
IPD 1.00 - - - -
CQD 0.43** 1.00 - - -
PQA 0.31** 0.28* 1.00 - -
CSS 0.52** 0.37** 0.19 1.00 -
PVO 0.25* 0.66** 0.22 0.41** 1.00

Sources: Author’s own Calculation
Note. *p < .05, **p < .01. Square root of AVE on diagonal > inter-factor correlations. *

Sources: Designed by Author’s own research data using python
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Table 7 shows The Confirmatory Factor Analysis (CFA) confirmed the robustness of the
hypothesized 5-factor model, demonstrating fit to the data (χ2/df = 4.24, CFI = 0.947,
RMSEA = 0.062, SRMR = 0.041), thereby exceeding established thresholds for model
acceptance (Hu & Bentler, 1999). All standardized factor loadings were strong and
statistically significant (all λ > 0.70, p<.001), with "career enhancement" (PVO: λ=0.92),
"video quality" (PQA: λ=0.89), and "content relevance" (CQD: λ=0.87) exhibiting
particularly high loadings. Furthermore, the psychometric properties of the scales were robust,
with Composite Reliability (CR) values ranging from 0.79 to 0.91 and Average Variance
Extracted (AVE) values from 0.55 to 0.77, all meeting standard psychometric criteria
(Fornell & Larcker, 1981). Discriminant validity was also firmly established, as the square
root of the AVE for each factor consistently exceeded its correlations with all other factors
(as detailed in Table 7). Examining inter-factor relationships, a strongest correlation emerged
between Content Quality (CQD) and Perceived Value (PVO) (r=0.66, p<.01), suggesting that
learners intrinsically link the relevance and quality of course content directly to its perceived
utility for their career progression. Additionally, Instructor Presence and Delivery (IPD)
showed a moderate correlation with Course Structure and Support (CSS) (r=0.52), implying
that effective teaching behaviors might significantly scaffold students' perceptions of the
overall organizational quality and support within the MOOC.

The Confirmatory Factor Analysis (CFA) robustly validated a career-anchored MOOC
acceptance model, where content quality (CQD) emerged as the strongest predictor of
perceived value (PVO), underscoring a shift towards MOOCs as strategic human capital
investments rather than solely idealistic "education for all" (Henderikx et al., 2017). This is
further evidenced by the high loading for career enhancement items (λ=0.92), reflecting
learners' prioritization of skill-to-job translatability and visible credential ROI. Conversely,
while Production Quality (PQA) showed strong individual loadings (λ=0.88–0.89), its weaker
correlations with other factors (Table 7) revealed a threshold phenomenon: poor production
guarantees immediate attrition, but excessive polish offers diminishing returns, aligning with
Mayer’s (2017) coherence principle while challenging "edutainment" trends. Despite
assumptions of instructor minimization for scalability, CFA confirmed Instructor Presence
and Delivery (IPD) as both the highest-variance factor (27.7% in EFA) and a structural
lynchpin (moderate correlation with CSS), supporting "humanized MOOC" frameworks
where nonverbal immediacy and dialogic scaffolding are highly valued (Lowenthal & Dunlap,
2020). Practically, these findings necessitate instructor media training focused on webcam-
based nonverbal communication, fostering transparent credentialing by mapping content to
industry-recognized competency frameworks, and implementing tiered production standards
(e.g., minimum 1080p video with high speech intelligibility for all courses, with premium
features for high-enrollment ones). Limitations include the cultural specificity of the Indian
sample, urging replication in Global North contexts, and the need for future research into
whether enrollment drivers differ from long-term completion drivers.

Result and discussion
This study provides a robust empirical basis for understanding why MOOCs, despite their
inherent advantages, frequently struggle with engagement and completion rates, particularly
in the critical initial enrollment phase. The previously noted "irony" of their underappreciated
potential can now be directly traced to potentially unaddressed factors within the "attraction"
phase. It reveals that enrollment is not solely a rational decision based on course topic or cost;
rather, it is significantly influenced by emotional and perceptual cues derived from the very
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first impression. For instance, a student encountering a MOOC with an unengaging instructor
or poor video quality, regardless of content quality, may experience instant disengagement,
contributing to the paradox of low retention. The implications of these findings are profound
for all stakeholders in online education: MOOC providers must shift their emphasis from
merely digitizing lectures to actively designing for attraction, necessitating investment in
instructor training for digital pedagogy, prioritizing professional production values, and
clearly communicating perceived value, with marketing efforts highlighting these 'human'
and 'quality' aspects. For educators, the role evolves beyond subject matter expertise to that of
a digital performer, requiring a critical understanding of how body language, facial
expressions, and vocal delivery translate effectively through a screen to captivate an audience.
For government initiatives, such as India's SWAYAM, incorporating these insights can
significantly boost participation and transform these platforms into truly "massive," "open,"
and "engaging" learning experiences, directly addressing national educational challenges
through strategic investment in high-quality production studios and comprehensive online
pedagogical training for instructors.

Limitations and avenues for further research
While this study provides critical insights into MOOC attraction, it is not without limitations.
The cross-sectional design, while suitable for identifying underlying factors, precludes
definitive statements about causality, suggesting that future research would benefit from
longitudinal studies tracking actual enrollment and completion rates based on initial exposure
to varying MOOC characteristics. The reliance on self-reported data also warrants caution,
highlighting the potential for integrating behavioral analytics from MOOC platforms (e.g.,
clickstream data, video watch times) to corroborate perceptual findings. Furthermore, while
the sample size of 500 students is robust for EFA and CFA, exploring potential cultural
nuances in perception across India's diverse linguistic and regional groups could offer richer
insights. Future studies could also investigate the moderating role of learner characteristics
(e.g., digital literacy, learning styles) on the influence of these attraction factors.

Conclusion
This study offers a foundational understanding of the multifaceted elements attracting Indian
students to MOOCs. By bridging theoretical gaps and providing actionable insights, it sets
the stage for designing more engaging online learning experiences. Ultimately, enhancing
these attraction factors is crucial for maximizing MOOCs transformative potential in India's
educational landscape.
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