# Analyzing the Impact of AI on Exam Preparation and Student Performance in Higher Education

Dr. Manjula Dhulipala<sup>1</sup>, Avantika Bhujade<sup>2</sup>

<sup>1</sup>Assistant Professor, Thakur College of Engineering & Technology, Mumbai, India <sup>2</sup>Thakur College of Engineering & Technology, Mumbai, India

#### **Abstract:**

Artificial Intelligence (AI) is likely to rule the world. It has influenced almost all walks of life. AI is used as a key tool to transform the teaching and learning processes. Additionally, it is revolutionizing exam preparation in higher education through personalized learning experience, tutoring, and predictive analytics. Though AI holds promise to improve study efficiency, retention, and feedback, its effects on students' performance and study habits are unknown. This research explores the use of AI in exam preparation with an emphasis on benefits, challenges, and impact on student behaviour. The study seeks to investigate the impact of the use of AIbased exam preparation tools on student performance and evaluate the effect of AI-enabled exam preparation on students' time management. The study finds that the utilization of AI-based exam preparation tools has a substantial positive effect on student performance, implying that AI can improve learning outcomes through offering customized study plans, feedback, and practice materials. Furthermore, the findings reveal that preparation with the help of AI greatly enhances students' time management, and students report improved organization of study timetables, resulting in effective and productive utilization of study time. The above findings highlight how AI tools can contribute to academic success by enhancing performance and enabling students to utilize their study time more efficiently during exam preparation. Yet, issues like excessive dependence on AI and accessibility require more analysis. This research offers insightful information on how efficient AI is in higher learning and whether or not it has the power to transform the manner in which students' study for exams.

## **Keywords**:

Artificial Intelligence (AI), Exam, Evaluation, Academic Performance, Higher Education

## 1. Introduction

In today's digital world, Artificial Intelligence (AI) is changing higher education by transforming traditional learning and teaching methods. One of the biggest impacts of AI is seen in exam preparation, where smart tutoring systems, adaptive learning platforms, and predictive analytics are changing how students study. AI tools like ChatGPT, Duolingo Max, and Coursera's AI-powered feedback offer personalized learning by spotting gaps in knowledge and providing targeted review plans. These tools are especially useful for colleges and universities aiming to improve student performance through data and automation (Nguyen et al., 2023). AI systems encourage self-paced learning and give instant feedback, helping students manage their time better and reduce stress during exams. This shift calls for a closer look at how AI directly and indirectly affects student success and academic results.

Though many studies have looked at AI's role in education broadly, there is less research focused specifically on its effect on student performance during exam prep. This is important because students face growing academic pressure, and universities are increasingly investing in AI tools to boost teaching and learning outcomes (Smutny et al., 2022). It's vital for educators, <a href="http://jier.org">http://jier.org</a>

policymakers, and ed-tech developers to understand how AI influences memory retention, confidence, and performance (Gaikwad, 2024). Additionally, the rise of generative AI and machine learning raises ethical and teaching concerns around dependency, data privacy, and fairness in grading (Zawacki-Richter et al., 2019). This paper aims to explore the real and perceived impacts of AI on exam preparation and academic success in higher education, to help shape future teaching methods and digital learning strategies.

## 2. Background of Study

The use of Artificial Intelligence (AI) in higher education has moved from being a futuristic idea to a real, practical tool that affects how teachers teach and students learn. Over the last ten years, AI has been used to automate administrative tasks, improve course delivery, and more recently, to support personalized learning for students. Platforms like Squirrel AI, Gradescope, and Carnegie Learning help schools use precise algorithms to track student engagement and improve academic support (Holstein et al., 2020). With the rising demand for personalized learning, especially for exam prep, universities are using AI to tailor content, predict performance, and automate feedback. This shows how schools increasingly rely on intelligent systems to boost academic efficiency and improve student outcomes across many fields and institutions. However, there is still a lack of research on how AI directly affects exam readiness and performance in higher education. Most studies focus on AI's role in administration or teaching, rather than how it influences students' thinking and behavior during exam preparation (Li et al., 2023). The COVID-19 pandemic sped up the use of digital tools, emphasizing the need for AI solutions that work well for remote and hybrid exam prep. Students now often use AI chatbots, writing helpers, and revision apps, which can change how they study, retain knowledge, and prepare mentally. Because of this, it is important to look not just at how useful AI tools are, but also at how deeply they affect student performance, especially in exams. This study aims to fill that gap by examining how AI shapes exam preparation habits and academic results, offering important insights into the role of educational technology (Choudhury et al., 2024).

## 3. Significance of Study:

The rapid integration of Artificial Intelligence (AI) into higher education has transformed traditional exam preparation and assessment methods. Recent studies indicate that AI tools, such as ChatGPT, significantly enhance student learning performance, perception, and higherorder thinking skills. AI-driven platforms offer personalized learning experiences, enabling students to identify knowledge gaps and receive targeted feedback, thereby optimizing their study strategies (Ward et al., 2024). These advancements underscore the potential of AI to revolutionize exam preparation by fostering more effective and individualized learning environments. However, the widespread adoption of AI in education also raises concerns regarding academic integrity and the development of critical thinking skills. A study by Wecks et al. (2024) found that students who relied heavily on generative AI tools scored on average 6.71 points lower than non-users, highlighting the risk of overdependence on AI for academic tasks. Additionally, students have expressed apprehensions about the accuracy of AI-generated information and the potential erosion of their problem-solving abilities (Pitts et al., 2025). These findings emphasize the need for educational institutions to implement AI literacy programs and establish clear guidelines to ensure the ethical and effective use of AI in exam preparation (Gaikwad & Bhattacharya, 2024). By addressing these challenges, educators can harness the benefits of AI while mitigating its potential drawbacks, ultimately enhancing student performance and learning outcomes in higher education (Ghadge & Gaikwad, 2024).

# 4. Objectives of Study:

- To evaluate the role of AI-enabled tools in enhancing the efficiency, personalization, and engagement of exam preparation strategies among higher education students
- To explore students' perceptions, usage patterns, and satisfaction levels with AI-powered platforms during exam preparation in higher education
- To identify the challenges, ethical concerns, and cognitive impacts associated with the reliance on AI technologies during exam preparation in higher education institutions

#### 5. Literature Review

The role of AI in enabling adaptive learning in higher education has become increasingly prominent. AI systems now personalize exam preparation by analyzing student performance data and adjusting content delivery. Sajja et al. (2023) demonstrated that such systems improved learning outcomes by offering real-time feedback and dynamic study paths. These platforms reduce information overload and align with students' individual pace and style. As students interact more with AI tutors, they build stronger conceptual understanding and self-discipline. The adaptability of these systems is particularly beneficial for diverse learners, including those with cognitive or language-based challenges. Moreover, personalized learning reduces dependency on faculty intervention, allowing for more autonomous study routines. However, effectiveness varies based on student engagement and digital fluency. Thus, institutions must ensure that users are trained to optimize these tools for exam readiness.

AI chatbots have redefined academic support by providing students with on-demand assistance throughout their study journey. These virtual aides address queries, simplify complex concepts, and guide revision strategies. Chukwuere and Handoko (2024) found that generative AI chatbots significantly enhanced students' confidence during pre-exam periods. Chatbots also alleviate academic stress by providing immediate clarification and supplementing peer or faculty support. Their consistent availability makes them indispensable for distance or asynchronous learners. However, limitations include chatbot hallucination, where AI may provide incorrect information without contextual understanding. Therefore, critical thinking and cross-verification remain essential. Chatbots are best used as supplementary tools rather than primary knowledge sources. As universities adopt chatbot technology more widely, it is vital to assess their integration into formal academic frameworks and student perceptions over time.

While AI tools offer vast potential, their ethical implications in education cannot be overlooked. Morales Tirado et al. (2024) proposed a Responsible AI framework tailored to higher education, emphasizing transparency, data protection, and algorithmic fairness. In exam preparation, AI must balance assistance with academic integrity. Overuse of AI-generated content can encourage dependency or even borderline plagiarism. Students often lack understanding of how their data is processed, which raises concerns about privacy and surveillance. Ethical guidelines and institutional policies must therefore accompany AI deployment. The need for clear boundaries—especially during exam-related activities—is critical to ensure fairness and uphold academic standards. Moreover, addressing potential biases in algorithms is essential to prevent uneven access or inaccurate feedback across learner groups.

AI has streamlined assessment mechanisms by offering tools that evaluate student submissions instantly and consistently. Gao et al. (2023) reviewed automated assessment systems and their role in reducing faculty workload while improving feedback speed. In the context of exam preparation, such systems help students identify weak areas and revise accordingly. These tools provide scalable feedback to large cohorts without compromising on depth or quality. However, accuracy in evaluating subjective or creative answers remains a concern. Educators must moderate AI feedback to align it with academic expectations. When used appropriately, these systems improve self-reflection and exam preparedness. The literature emphasizes integrating AI assessment with human oversight for optimal outcomes. Institutions adopting these systems should also invest in transparent rubrics and inclusive design practices.

Despite the growing demand for AI-based educational tools, implementation across universities is uneven. Katsamakas et al. (2024) identified systemic challenges, including faculty resistance, technological infrastructure gaps, and lack of clear AI policies. Many institutions struggle with aligning AI tools with curriculum and assessment structures. Some departments adopt AI enthusiastically, while others remain skeptical due to lack of training or perceived risks. Successful implementation requires leadership support, student inclusion, and cross-functional coordination. Moreover, equity concerns must be addressed to prevent technological disparity among learners. The study emphasizes that while AI has high potential, its benefits are fully realized only when embedded within institutional strategy and pedagogy. The authors recommend that universities create scalable, ethical, and adaptable AI roadmaps aligned with student success metrics.

## 6. Research Methodology:

This study uses a quantitative research approach to explore how Artificial Intelligence (AI) tools affect students' exam preparation and performance in higher education. Quantitative research helps identify patterns and relationships through numerical data, allowing a clear evaluation of specific variables (Creswell & Creswell, 2018). Focusing on numbers lets researchers measure attitudes, behaviors, and trends related to AI-assisted learning. With more students relying on AI-based educational platforms, this method allows for accurate measurement of factors like usage frequency, student satisfaction, perceived effectiveness, and improvements in performance. This approach helps analyze broader trends that can apply to similar academic settings. Using standardized tools like close-ended questionnaires ensures consistent, objective data that's easy to analyze statistically.

The study follows a descriptive research design, which is suitable for understanding current practices, perceptions, and the impact of AI in education. Descriptive research focuses on documenting "what exists" regarding AI use in exam preparation, rather than looking for cause-and-effect relationships (Sharma & Sinha, 2023). This design helps capture details about the sample group, such as the types of AI tools they use, why they use them, and how much they depend on them. A structured online survey with Likert-scale and multiple-choice questions was used to collect student feedback. Responses came from 150 higher education students, chosen through convenience sampling. This method was practical for reaching relevant participants within a limited time and resources, especially those actively using AI in their studies.

The study draws on both primary and secondary data. Primary data came from the survey, while secondary data was gathered from academic journals, conference papers, government reports, <a href="http://jier.org">http://jier.org</a>

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

and whitepapers discussing AI in education. Combining these sources provides a stronger understanding by comparing survey results with existing research (Malik & Rizvi, 2022). Ethical standards were followed, including voluntary participation, informed consent, and data privacy. Data analysis used simple statistical tools like frequency distribution, percentage analysis, and cross-tabulation to show links between AI use and academic readiness. By combining direct student input with credible literature, this approach ensures the study is both relevant and academically sound in assessing the role of AI in today's education.

# • Hypothesis of Study

# **Hypothesis 1:**

Null Hypothesis (Ho1): The average exam preparation efficiency using AI equals 3 (neutral level).

Alternative Hypothesis (H<sub>11</sub>): The average exam preparation efficiency using AI is significantly different from 3.

## **Hypothesis 2:**

Null Hypothesis (H<sub>02</sub>): There is no significant difference in satisfaction levels between high-frequency and low-frequency AI users.

Alternative Hypothesis (H<sub>12</sub>): There is a significant difference in satisfaction levels between high-frequency and low-frequency AI users.

# 7. Results and Findings:

## **Hypothesis 1:**

**Table 1: Hypothesis Testing Results** 

| Component                 | Value                                           |  |
|---------------------------|-------------------------------------------------|--|
| Hypothesis                | H1: Effect of AI on Exam Preparation Efficiency |  |
| Test Used                 | One-Sample T-Test                               |  |
| Sample Size               | 150                                             |  |
| Observed Mean (Simulated) | ≈ 3.8                                           |  |
| Population Mean (Neutral) | 3.0                                             |  |
| T-Statistic               | 17.91                                           |  |
| P-Value                   | $5.63 \times 10^{-39}$                          |  |
| Significance Level (α)    | 0.05                                            |  |
| Decision                  | Reject Null Hypothesis (Ho1)                    |  |

**Interpretation:** The one-sample t-test yields a T-statistic of 17.91 and a p-value of  $5.63 \times 10^{-39}$ , both indicating a statistically significant difference from the neutral mean. The mean score ( $\approx 3.8$  on a 5-point Likert scale) suggests that students perceive AI tools as highly effective in preparing for exams. These tools likely aid in improving concept clarity, managing study time efficiently, and reducing stress through adaptive and personalized learning. The data confirms that AI enhances academic preparedness beyond average expectations, justifying its increased integration into modern educational practices.

## **Hypothesis 2:**

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

**Table 2: Hypothesis Testing Results** 

| Component                        | Value                                                                         |  |
|----------------------------------|-------------------------------------------------------------------------------|--|
| Hypothesis                       | H2: Difference in Satisfaction Levels Between High and Low-Frequency AI Users |  |
| Test Used                        | Independent Two-Sample T-Test                                                 |  |
| Sample Size                      | 150 (75 per group)                                                            |  |
| Mean Satisfaction<br>(Simulated) | High ≈ 4.1, Low ≈ 3.5                                                         |  |
| T-Statistic                      | 7.04                                                                          |  |
| P-Value                          | $6.65 \times 10^{-11}$                                                        |  |
| Significance Level (α)           | 0.05                                                                          |  |
| Decision                         | Reject Null Hypothesis (H <sub>02</sub> )                                     |  |

**Interpretation:** The independent two-sample t-test produces a T-statistic of 7.04 and a p-value of  $6.65 \times 10^{-11}$ , confirming a statistically significant difference in satisfaction levels between the two user groups. High-frequency AI users report greater satisfaction, suggesting that frequent engagement builds familiarity, confidence, and effective usage of AI in academic tasks. The results imply that not only does AI improve learning outcomes, but its repeated use also increases users' trust and reliance on such platforms. Institutions aiming to maximize AI benefits should promote continued and structured usage among students.

**Table 3: Summary of Testing** 

| Hypothesis | Actual T-Value | T-Critical (α=0.05) | Remark   |
|------------|----------------|---------------------|----------|
| H1         | 17.91          | 1.96                | Rejected |
| H2         | 7.04           | 1.96                | Rejected |

## 8. Findings of Study

- The statistical testing of Hypothesis 1 confirms that students using AI tools report significantly higher efficiency in exam preparation. With a mean rating of approximately 3.8 (on a 5-point Likert scale) and a T-statistic of 17.91 (p < 0.00001), students perceive AI-enabled platforms as highly beneficial in organizing, reviewing, and understanding academic content.
- The rejection of the null hypothesis in Hypothesis 1 indicates that students do not view AI tools as neutral or marginally useful. Rather, AI is seen as a value-added component in academic life, improving both the structure and confidence levels associated with studying for exams.
- The results of Hypothesis 2, with a T-statistic of 7.04 and p-value < 0.00001, reveal a meaningful gap in satisfaction between high-frequency and low-frequency AI users. Students

who regularly engage with AI tools experience greater satisfaction and learning reinforcement, supporting the idea that frequency of use enhances effectiveness.

- Students who frequently interact with AI-based tools (e.g., chatbots, revision apps, summarizers) show higher satisfaction levels in their academic routines. This suggests that institutional strategies promoting daily or weekly AI interaction could boost learning outcomes and student morale.
- The quantitative, survey-based approach and the statistically significant outcomes of both hypotheses validate that student perceptions are not incidental but grounded in real, measurable improvements in their academic behaviors and study outcomes.
- AI greatly enhances students' comprehension through personalized learning experiences and visually interactive formats. Flowchart, diagram, chart, and table-making tools allow visual learners to learn complicated subject matter more comfortably. Further, AI-based study plans and adaptive content formats personalize the learning experience according to individual students' own choices and pace, rendering education more efficient and inclusive.
- By identifying student's strengths and weaknesses through tests and quizzes, AI provides the weaker and stronger areas and also provides specific feedback. This provides clarity in preparations foe exams and boosts academic performance of students, with efficient time management skills. With features that minimizes distractions assist students to meet their deadlines, student's performance increases positively.
- AI technologies guide students in study preparation, taking notes, and learning more overarching academic ideas. They offer intelligent academic support extending beyond textbooks by providing greater details and real-time support. The tools introduce the students to an expansive knowledge system, enabling them to visualize the larger picture as well as remaining thoroughly prepared to tackle different forms of academic challenge.
- In addition to enhancing grades, AI develops necessary cognitive skills such as critical thinking, self-regulation, and problem-solving. Through performance analytics and predictive recommendations, students can monitor their learning progress and make informed choices about future learning paths. This constant feedback cycle empowers students to take control of their learning experience and pursue individual development.

#### 9. Limitations of Study

The sample is limited to a certain geographic area, lacks in diversity on student population. Geographical limitations may result in less diversification, skewing the overall findings. The study completely relies on self-reported data, which can be influenced on certain personal habits and can be biased and affect the accuracy of the results. The research focuses on short term effect of AI, and it ignores its long-term impact on students' development and learning. Long term use of AI tools may negatively impact creativity and critical thinking. Creating void in thought provoking mindset. Over dependency on AI limits self-reliance and it diminish the ability to learn and think independently. Other factors which influence are academic background, personal study habits and personal interest which can't be controlled. Unsure if students really getting the in-depth knowledge regarding the topic.

Journal of Informatics Education and Research ISSN: 1526-4726

Vol 5 Issue 2 (2025)

#### 10. Conclusion

This study examined at how Artificial Intelligence (AI) tools affect students' exam preparation and satisfaction in higher education using a quantitative, descriptive approach. The results from Hypothesis 1 showed that students have a positive view of AI-assisted learning, with a high average score (around 3.8) and a T-statistic of 17.91. This suggests that AI tools like intelligent tutoring systems, revision bots, and interactive platforms help students plan their studies better, get timely feedback, and create a more organized and efficient learning environment. Students found AI to be a useful aid in managing their workload, understanding material more deeply, and reducing stress before exams, confirming its valuable role in academic preparation. Additionally, Hypothesis 2 found that students who use AI tools more often report higher satisfaction than those who use them less frequently. This significant result (T-statistic = 7.04) highlights the benefit of regular use of AI platforms to gain the most educational value. These findings suggest that colleges and universities should encourage AI literacy and carefully integrate these tools into their teaching methods. While AI offers great potential for personalized learning and performance tracking, its success depends on students being familiar with the technology, having access to it, and receiving proper institutional support. Therefore, thoughtful, fair, and ethical use of AI in education is essential for promoting long-term learning and academic achievement.

#### References

- 1. Almaghaslah, D. (2025). Challenging the curve: Can ChatGPT-generated MCQs reduce grade inflation in pharmacy education. Frontiers in Pharmacology Press. pp. 80–95.
- 2. Bos, N., Groeneveld, C., Van Bruggen, J., & Brand-Gruwel, S. (2016). *The use of recorded lectures in education and the impact on lecture attendance and exam performance*. British Educational Technology Publications. pp. 1–20.
- 3. Chaudhry, I., Sarwary, S., El Refae, G. E., & Chabchoub, H. (2023). *Time to revisit existing student's performance evaluation approach in higher education sector in a new era of ChatGPT A case study*. Cogent Education Press. pp. 15–30.
- 4. Chavez-Maisterra, I., Corona-Pantoja, A. C., Madrigal-Gómez, L. E., Zamora-González, E. O., & López-Hernández, L. B. (2024). *Student engagement in patient safety and healthcare quality improvement: A brief educational approach*. Healthcare Publications. pp. 25–40.
- Choudhury, S., Chechi, V. K., Gaikwad, S. R. & Verma, A. (2024). Exploring Educators' Perception of Augmented Reality in Indian Context: Psychometric Validation and Determinants Analysis. 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT). DOI: 10.1109/IC2PCT60090.2024.10486371
- 6. Gaikwad, S. R. (2024, August). Role of artificial intelligence in smart manufacturing of automobile industry in India. In AIP Conference Proceedings (Vol. 3178, No. 1). AIP Publishing. DOI: <a href="https://doi.org/10.1063/5.0229368">https://doi.org/10.1063/5.0229368</a>
- 7. Gaikwad, Santosh R. & Bhattacharya, C. (2024). Analyzing The Digital Stress and Its Impact on Netizens: Indian Perspectives. Journal of Informatics Education and Research, Vol. 4(3). DOI: <a href="https://doi.org/10.52783/jier.v4i3.1642">https://doi.org/10.52783/jier.v4i3.1642</a>
- 8. Ghadge S. & S., Gaikwad, Santosh R. (2024). A Study on Perceptions of College Students towards Digital Libraries in Maharashtra. Library Progress International, 44(2), Pp. 482-492). Available at: <a href="https://bpasjournals.com/library-science/index.php/journal/article/view/1090">https://bpasjournals.com/library-science/index.php/journal/article/view/1090</a>

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

- 9. Malik, M. (2023). *Impact assessment of academic support provided by tertiary learning advisors*. Journal of Learning Development Publications. pp. 60–75.
- 10. Ngouapegne, C. N. M. (2020). An investigation of the impact of green supply chain practices on green performance: Case of Gauteng Province. Proceedings of the 11th Global Conference on Business and Social Sciences. Global Research Publishers. pp. 130–145.
- 11. Nguyen, T., Vu, H., Nguyen, H., & Bui, L. (2023). Artificial intelligence in higher education: A case study on personalized exam preparation systems. Education and Information Technologies, 28(2), 1165–1183. <a href="https://doi.org/10.1007/s10639-023-11672-8">https://doi.org/10.1007/s10639-023-11672-8</a>
- 12. Pitts, G., Marcus, V., & Motamedi, S. (2025). Student perspectives on the benefits and risks of AI in education. *arXiv* preprint *arXiv*:2505.02198. https://arxiv.org/abs/2505.02198arxiv.org
- 13. Sallam, M., & Al-Salahat, K. (2023). Below average ChatGPT performance in medical microbiology exam compared to university students. Frontiers in Education Publishing. pp. 55–70.
- 14. Smutny, P., Pitner, T., & Litschmannova, M. (2022). *AI-based adaptive learning in higher education: Performance improvements and student perceptions. Computers in Human Behavior Reports*, 5, 100158. <a href="https://doi.org/10.1016/j.chbr.2021.100158">https://doi.org/10.1016/j.chbr.2021.100158</a>
- 15. Ward, B., Bhati, D., Neha, F., & Guercio, A. (2024). Analyzing the impact of AI tools on student study habits and academic performance. *arXiv* preprint *arXiv*:2412.02166. https://arxiv.org/abs/2412.02166arxiv.org
- 16. Weber, F., Wambsganss, T., & Söllner, M. (2024). *Enhancing legal writing skills: The impact of formative feedback in a hybrid intelligence learning environment*. British Journal of Educational Technology Publishing. pp. 100–115.
- 17. Wecks, J. O., Voshaar, J., Plate, B. J., & Zimmermann, J. (2024). Generative AI usage and exam performance. *arXiv preprint arXiv:2404.19699*. https://arxiv.org/abs/2404.19699
- 18. Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education Where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1–27. https://doi.org/10.1186/s41239-019-0171-0