ISSN: 1526-4726 Vol 5 Issue 2(2025)

Mean Queue Length of a Four-Server Feedback Queuing Model with Customer Returns to Any Server up to Finite Times

Surender Kumar¹

¹Department of Mathematics, Gaur Brahman Degree College, Rohtak : ¹surender210882@gmail.com

Pooja Bhatia² Neelam³

^{2,3}Department of Mathematics, Baba Mastnath University, Rohtak ²<u>poojabudhiraja@bmu.ac.in</u> ³neelamsharma2719@gmail.com

ABSTRACT

A feedback queueing model that considers four servers—one of which is centrally connected to the other three—is presented in this paper. Only the first server allows customers to access the system; they can then move on to the second, third, or fourth server. If the service does not satisfy the customer's needs, they may return to the previously visited server a limited number of times. The probabilities of going back to the servers is thought to be different with every visit. The steady state equations have been used to calculate the mean queue lengths of the system. Using both numerical and graphical methods, the variations in the average mean queue lengths of the system have been identified.

Key Words: Feedback queuing system, Four types of servers, Revisit to servers.

1 Introduction

The literature on feedback queueing models is extensive in the field of queueing theory. Multiserver and multiclass queuing models have been discussed by a good number of researchers such as Jianghua and Jinting (2006), Houdt et al. (2008), Goswami and Pandit (2011), Sundri and Srinivasan (2012), Aristotles and Endah (2013), Ibe and Isijola (2014), Morozov (2014), Kang (2015), Yanfeng and Christos (2015), Zadeh (2015), Atar and Mendelson (2016), Avrachenkov et al. (2016), Jansen et al. (2016), Reed and Zhang (2017), Antonioli et al. (2018), Ginting et al. (2018).

Kumar and Taneja (2019), worked on the feedback queuing system comprising of three servers, in which one is centrally connected with the other two servers. Kamal et al. (2023) worked on four servers feedback queueing system in which a customer from outside can enter the system through first server only. After that she/he may go to any of the other three servers as per her/his need for service. If she/he is not satisfied with the service, revisit with different probability is also possible. But they assumed the revisit only once. There may be systems in place where services are provided in such a manner having four servers with the provision of service more than twice; as a result, Nidhi et al. (2024) dedicated to examining these systems. They assumed the revisits more than once but up to finite number of times. They discussed a queueing system where customers can either proceed to the second, third or fourth server based on their pleasure with the service. There's also a possibility that she/he will quit the system after satisfaction or come back to the original server with criticism. In this instance, we have taken into account the circumstances in which a client is obligated to return up to a certain number of times. Each time you come back, your probability of getting on any given server are considered to be unique. Administrative offices, medical facilities and other organizations may all encounter this kind of circumstances. With the

ISSN: 1526-4726

Vol 5 Issue 2(2025)

use of the differential-difference method, the queue lengths have been established by them. But they did not justify the findings numerically and graphically.

In this study, we have provided a numerical and graphical explanation of the model's results by giving different variables and queueing characteristics arbitrary numerical values in the derived formulae.

2 Notation

λ: Mean Arrival rate at 1st server (S₁)

 μ_1 : service rate of 1st server (S₁)

 μ_2 : service rate of 2nd server (S₂)

 $\mu_{3:}$ service rate of 3rd server (S₃)

 μ_4 : service rate of 4th server (S₄)

pi₁₂: the probability of customer going from 1stto 2nd server ith time.

pi₁₃: the probability of customer going from 1stto 3rd server ith time.

pi₁₄: the probability of customer going from 1stto 4th server ith time.

pi₂: the probability of exit of customer from 2nd server ith time.

pi₂₃: the probability of customer going from 2nd to 3rd server ith time.

pi₂₄: the probability of customer going from 2nd to 4th server ith time.

pi₂₁: the probability of customer going from 2nd to 1st server ith time.

pⁱ₃: the probability of exit of customer from 3rd server ith time.

pi 31: the probability of customer going from 3rd to 1st server ith time.

pi₃₂: the probability of customer going from 3rd to 2nd server ith time.

pi₃₄: the probability of customer going from 3rd to 4th server ith time pi₄: the probability of exit of customer from 4th server ith time.

 p_{41}^{i} : the probability of exit of customer from 4^{th} to 1^{st} server ith time.

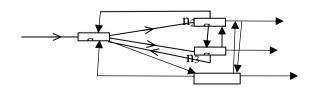
pi₄₂: the probability of customer going from 4th to 2nd server ith time.

pⁱ₄₃: the probability of customer going from 4th to 3rd server ith time.

$$A_{12} = \sum_{i=1}^{n} a^{i} p_{12}^{i} \qquad A_{13} = \sum_{i=1}^{n} a^{i} p_{13}^{i}$$

$$A_{14} = \sum_{i=1}^{n} a^{i} p_{14}^{i}$$

$$A_{14} = \sum_{i=1}^{n} a^{i} p_{14}^{i}$$


$$B_2 = \sum_{i=1}^n b^i p_2^i$$
, $B_{21} = \sum_{i=1}^{n-1} b^i p_{21}^i$, $B_{23} = \sum_{i=1}^n b^i p_{23}^i$, $B_{24} = \sum_{i=1}^n b^i p_{24}^i$

$$C_3 = \sum_{i=1}^n c^i p_3^i$$
 , $C_{34} = \sum_{i=1}^n c^i p_{34}^i$, $C_{31} = \sum_{i=1}^{n-1} c^i p_{31}^i$, $C_{32} = \sum_{i=1}^{n-1} c^i p_{32}^i$

$$D_4 = \sum_{i=1}^n d^i \, p_4^i \; , \quad D_{43} = \sum_{i=1}^{n-1} d^i \, p_{43}^i \; , \quad D_{42} = \sum_{i=1}^{n-1} d^i \, p_{42}^i \; , \\ D_{41} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{42} = \sum_{i=1}^{n-1} d^i \, p_{42}^i \; , \\ D_{43} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{44} = \sum_{i=1}^{n-1} d^i \, p_{42}^i \; , \\ D_{45} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{46} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{47} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \\ D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p_{41}^i \; , \quad D_{48} = \sum_{i=1}^{n-1} d^i \, p$$

3 Formulation of Problem

According to Nidhi et al. (2024), the queue network consists of four service channels in such a manner that first server (S_1) is centrally linked with the remaining three parallel servers (S_2) , (S_3) and (S_4) . It is assumed that customer arrives at first server (S_1) from outside the system and then may go to any one of the second (S_2) , third (S_3) and fourth (S_4) server. The situation has been shown by the following sate transition diagram:

ISSN: 1526-4726

Vol 5 Issue 2(2025)

Diagram Showing Movement of the Customers from Various Servers

A customer either goes to the second, third, or fourth server after receiving service from the first server ith time, so that $p^i_{12} + p^i_{13} + p^i_{14} = 1$. Once a customer is satisfied, they can leave the system from the second server or proceed to the third, or fourth server or back to first server so that $p^i_{2} + p^i_{21} + p^i_{23} + p^i_{24} = 1$. In order to $p^i_{3} + p^i_{31} + p^i_{32} + p^i_{34} = 1$, s/he can leave the system from the third server or go to the fourth, second, or first server. In a similar vein, the user may leave the system from the fourth server or switch to the third, second, or first server. Thus, $p^i_{4} + p^i_{41} + p^i_{42} + p^i_{43} = 1$. As a result, we have:

 $A_{12}+A_{13}+A_{14}=1$

 $B_2+B_{21}+B_{23}+B_{24}=1$

 $C_3+C_{31}+C_{32}+C_{34}=1$

 $D_4+D_{41}+D_{42}+D_{43}=1$

Let Q_{n_1,n_2,n_3,n_4} is the probability of having n_1 , n_2 , n_3 , n_4 customers at server 1^{st} , 2^{nd} , 3^{rd} and 4^{th} server at any time t then;

$$Q_{n_1 n_2 n_3 n_4} = \begin{cases} 1; n_1, n_2, n_3, n_4 \neq 0 \\ 0; otherwise \end{cases}$$

and

$$F(X,Y,Z,R) = \sum_{n_1 n_2 n_3 n_4} Z^{n_1} Y^{n_2} Z^{n_3} R^{n_4}$$
where $|X| = |Y| = |Z| = |R| = 1$... (1)

They further defined:

$$G_{n_2,n_3,n_4}(X) = \sum_{n_1=0}^{\infty} Q_{n_1 n_2 n_3 n_4} X^{n_1} \qquad \dots (2)$$

$$G_{n_3,n_4}(X,Y) = \sum_{n_3=0}^{\infty} G_{n_2,n_3,n_4}(X) Y^{n_2}$$
 ... (3)

$$G_{n_4}(X,Y,Z) = \sum_{n_3=0}^{\infty} G_{n_3,n_4}(X,Y)Z^{n_3}$$
 ... (4)

$$F(X,Y,Z,R) = \sum_{n_4=0}^{\infty} G_{n_4}(X,Y,Z)R^{n_4} \qquad ... (5)$$

For convenience,

 $G_0(Y, Z, R) = G_1$

 $G_0(X, Z, R) = G_2$

 $G_0(X, Y, R) = G_3$

 $G_0(X, Y, Z) = G_4$

They obtained the following by solving the queueing system's steady state equations:

$$\begin{split} \mu_1 B_{21}(A_{12}(1-C_{34}B_{43}) + C_{32}(A_{14}D_{43} + A_{13}) + (A_{13}C_{34} + A_{14})D_{42}) \\ + \mu_1(C_{32}(B_{23}D_{43} + B_{23}) + B_{23}(C_{34} + 1)D_{42}) + \mu_1C_{31}(A_{12}(B_{23}D_{43} + B_{23}) \\ + (A_{14} - A_{13})B_{23}D_{42}) + \lambda(C_{32}(-B_{23}D_{43} - B_{23}) + B_{23}(-C_{34} - 1)D_{42}) \\ G_1 &= \frac{+\mu_1(A_{12}B_{23}(C_{34} + 1) + (A_{13} - A_{14})B_{23}C_{32})D_{41}}{\mu_1B_{21}(A_{12}(1-C_{34}B_{43}) + C_{32}(A_{14}D_{43} + A_{13}) + (A_{13}C_{34} + A_{14})D_{42})} \\ &+ \mu_1(C_{32}(B_{23}D_{43} + B_{23}) + B_{23}(C_{34} + 1)D_{42}) + \mu_1C_{31}(A_{12}(B_{23}D_{43} + B_{23}) \\ &+ (A_{14} - A_{13})B_{23}D_{42}) + \mu_1(A_{12}B_{23}(C_{34} + 1) + (A_{13} - A_{4})B_{23}C_{32})D_{41} \end{split} ... (6)$$

ISSN: 1526-4726

Vol 5 Issue 2(2025)

$$\begin{split} &\mu_2 B_{21}(A_{12}(I-C_{34}D_{43})+C_{32}(A_{14}D_{43}+A_{13})+(A_{13}C_{34}+A_{14})D_{42})\\ &+\mu_3(A_{12}(I-C_{34}D_{43})+C_{32}(A_{14}D_{43}+A_{13})+(A_{13}C_{34}+A_{14})D_{42}\\ &+\mu_2(C_{32}(B_{23}D_{43}+B_{23})+B_{23}(C_{34}+I)D_{42})+\mu_2C_{31}(A_{12}(B_{23}D_{43}+B_{23})\\ &G_2=\frac{+(A_{14}-A_{13})B_{23}D_{42})+\mu_2(A_{12}B_{23}(C_{34}+I)+(A_{13}-A_{14})B_{23}C_{32})D_{41}}{\mu_2B_{21}(A_{12}(I-C_{34}D_{43})+C_{32}(A_{14}D_{43}+A_{13})+(A_{13}C_{34}+A_{14})D_{42})}\\ &+\mu_2(C_{32}(B_{23}D_{43}+B_{23})+B_{23}(C_{34}+I)D_{42})+\mu_2C_{31}(A_{12}(B_{23}D_{43}+B_{23})\\ &+(A_{14}-A_{13})(B_{23}D_{42})+\mu_2(A_{12}B_{23}(C_{34}+I)+(A_{13}-A_{14})B_{23}C_{32})D_{41}\\ &&\qquad \qquad(7)\\ &\mu_3B_{21}(A_{12}(I-C_{34}D_{43})+C_{32}(A_{14}D_{43}+A_{13})+(A_{13}C_{34}+A_{14})D_{42})\\ &+\mu_3(C_{32}(B_{23}D_{43}+B_{23})+B_{23}(C_{34}+I)D_{42})+\mu_3C_{31}(A_{12}(B_{23}D_{43}+B_{23})\\ &+(A_{14}-A_{13})B_{23}D_{42})+\lambda(A_{12}B_{23}D_{43}+B_{23})+(A_{14}-A_{13})B_{23}D_{42})\\ &G_3=\frac{+\mu_3(A_{12}B_{23}(C_{34}+I)+(A_{13}-A_{14})B_{23}C_{32})D_{41}}{\mu_2B_{21}(A_{12}(I-C_{34}D_{43})+C_{32}(A_{14}D_{43}+A_{13})+(A_{13}C_{34}+A_{14})D_{42})}\\ &+\mu_3(C_{32}(B_{23}D_{43}+B_{23})+B_{23}(C_{34}+I)D_{42})+\mu_3C_{31}(A_{12}(B_{23}D_{43}+B_{23})\\ &+(A_{14}-A_{13})(B_{23}D_{42})+\mu_3(A_{12}B_{23}(C_{34}+I)D_{42})+\mu_3C_{31}(A_{12}(B_{23}D_{43}+B_{23})\\ &+(A_{14}-A_{13})(B_{23}D_{42})+\mu_3(A_{12}B_{23}(C_{34}+I)D_{42})+\mu_3C_{31}(A_{12}(B_{23}D_{43}+B_{23})\\ &+(A_{14}-A_{13})(B_{23}D_{42})+\mu_3(A_{12}B_{23}(C_{34}+I)D_{42})+\mu_4C_{31}(A_{12}(B_{23}D_{43}+B_{23})\\ &+(A_{14}-A_{13})B_{23}D_{42})+\mu_4(A_{12}B_{23}(C_{34}+I)D_{42})+\mu_4C_{31}(A_{12}(B_{23}D_{43}+B_{23})\\ &+(A_{14}-A_{13})B_{23}D_{42})+\mu_4(A_{12}B_{23}(C_{34}+I)D_{42})+\mu_4C_{31}(A_{12}(B_{23}D_{43}+B_{23})\\ &+(A_{14}-A_{13})B_{23}D_{42})+\mu_4(A_{12}B_{23}(C_{34}+I)D_{42})+\mu_4C_{31}(A_{12}(B_{23}D_{43}+B_{23})\\ &+(A_{14}-A_{13})B_{23}D_{42})+\mu_4(A_{12}B_{23}(C_{34}+I)D_{42})+\mu_4C_{31}(A_{12}(B_{23}D_{43}+B_{23})\\ &+(A_{14}-A_{13})B_{23}D_{42})+\mu_4(A_{12}B_{23}(C_{34}+I)D_{42})+\mu_4C_{31}(A_{12}(B_{23}D_{43}+B_$$

If Lq be the mean queue length of the whole system then:

ISSN: 1526-4726

Vol 5 Issue 2(2025)

$$Lq = -\mu_{1} \left[\frac{(\mu_{1}G_{1} - \mu_{2}B_{21}G_{2} - \mu_{3}C_{31}G_{3} - \mu_{4}D_{41}G_{4})}{(-\lambda + \mu_{1} - \mu_{2}B_{21} - \mu_{3}C_{31} - \mu_{4}D_{41})^{2}} + \frac{G_{1}}{(-\lambda + \mu_{1} - \mu_{2}B_{21} - \mu_{3}C_{31} - \mu_{4}D_{41})} \right]$$

$$+ -\mu_{2} \left[\frac{(-\mu_{1}A_{2}G_{1} + \mu_{2}G_{2} - \mu_{3}G_{3}C_{32} - \mu_{4}G_{4}D_{42})}{(-\mu_{1}A_{12} + \mu_{2} - \mu_{3}C_{32} - \mu_{4}D_{42})^{2}} \right]$$

$$+ \frac{G_{2}}{(-\mu_{1}A_{12} + \mu_{2} - \mu_{3}C_{32} - \mu_{4}D_{42})} \right]$$

$$- \mu_{3} \left[\frac{(-\mu_{1}G_{1}A_{13} - \mu_{2}G_{2}B_{23} + \mu_{3}G_{3} - \mu_{4}G_{4}D_{43})}{(-\mu_{1}A_{13} - \mu_{2}B_{23} + \mu_{3} - \mu_{4}D_{43})^{2}} \right]$$

$$+ \frac{G_{3}}{(-\mu_{1}A_{13} - \mu_{2}B_{23} + \mu_{3} - \mu_{4}D_{43})} \right]$$

$$+ -\mu_{4} \left[\frac{(-\mu_{1}G_{1}A_{14} - \mu_{2}G_{2}B_{24} - \mu_{3}G_{3}C_{34} + \mu_{4}G_{4})}{(-\mu_{1}A_{14} - \mu_{2}B_{24} - \mu_{3}C_{34} + \mu_{4})^{2}} \right]$$

$$+ \frac{G_{4}}{(-\mu_{1}A_{14} - \mu_{2}B_{24} - \mu_{3}C_{34} + \mu_{4})} \right]$$
... (10)

Numerical Results and Discussion:

4.1 Behaviour of mean queue length of the system (L_q) with respect to arrival rate (λ) for different values of μ_1 is depicted in Table 4.1 and in Fig. 4.1 keeping the values of other parameters as fixed.

Table 4.1				
$\mu_2 = 0.1$,	$\mu_2 = 0.1$, $\mu_3 = 5$, $\mu_4 = 0.2$, $A_{14} = 0.5$			
$A_{13}=0.3$	$A_{13}=0.3$, $A_{12}=0.2$, $B_{2}=0.4$, $B_{21}=0.3$,			
	$B_{24}=0.1, C$			
	$C_{34}=0.05, 1$	$D_4=0.1, D_{41}=0.1$	=0.7,	
$D_{42}=0.13$	5, D ₄₃ =0.05			
	μ1=0.5	μ ₁ =1	μ1=2	
λ	Lq	Lq	Lq	
4	14.30324	11.2892	7.506586	
5	14.78821	11.66644	6.663907	
6	15.27107	12.08646	6.138637	
7	15.73794	12.51168	5.734197	
8	16.18082	12.92305	5.371759	
9	16.59428	13.30926	5.012956	
10	16.97416	13.66257	4.6361	
11	17.31689	13.97704	4.227255	
12	17.61917	14.24764	3.776382	
13	17.87779	14.46975	3.275483	
14	18.0895	14.6389	2.71762	

Vol 5 Issue 2(2025)

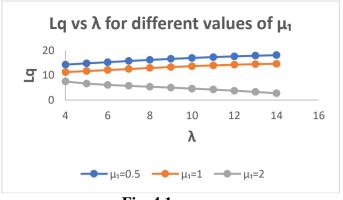


Fig. 4.1

Following can be interpreted from **Table 4.1** and **Fig. 4.1**:

- (i) Mean queue length (L_q) increases with the increase in λ for $\mu_1 < 2$ but decreases for $\mu_1 \ge 2$.
- (ii) Mean queue length (L_q) decreases with respect to the increase in first server service rate (μ_1).
- 4.2. Behaviour of mean queue length of the system (L_q) with respect to service rate (μ_2) for different values of arrival rate λ is depicted in Table 4.2 and in Fig. 4.2 keeping the values of other parameters as fixed.

Table 4.2 $\mu_1 = 6$, $\mu_3 = 5$, $\mu_4 = 0.2$, $A_{14} = 0.5$, $A_{13} = 0.3$, $A_{12}=0.2$, $B_{2}=0.4$, $B_{21}=0.3$, $B_{23}=0.2$, $B_{24}=0.1$, $C_3=0.6$, $C_{32}=0.15$, $C_{31}=0.2$, $C_{34}=0.05$, $D_{4}=0.1$, $D_{41}=0.7$, $D_{42}=0.15$, $D_{43}=0.05$ $\lambda = 0.1$ $\lambda = 0.2$ $\lambda = 0.3$ Lq Lq μ_2 Lq 12 61.24455 66.44511 73.67342 12.1 65.88566 71.59288 79.58573 70.92091 12.2 77.19773 86.05975 76.39575 83.31495 93.16894 12.3 100.9992 82.36227 90.00839 12.4 12.5 88.8804 97.35205 109.6514 12.6 96.01939 105.4321 119.2448 12.7 103.8595 114.3493 129.9213 12.8 112.4943 124.2223 141.8506 12.9 122.0333 135.1913 155.2374

13

132.6053

http://jier.org

147.423

170.3303

Vol 5 Issue 2(2025)

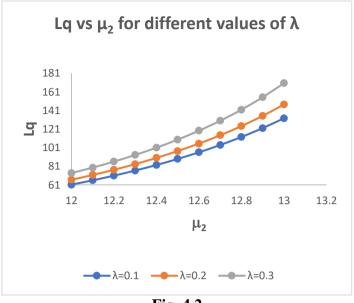


Fig. 4.2

Following can be interpreted from **Table 4.2** and **Fig. 4.2**:

- (i) Mean queue length (L_q) increases with respect to the increase in second server service rate (μ_2) .
- (ii) Mean queue length (L_q) increases with the increase in λ .
- 4.3. Behaviour of mean queue length of the system (L_q) with respect to service rate of third server (μ_3) for different values of arrival rate λ is depicted in Table 4.3 and in Fig. 4.3 keeping the values of other parameters as fixed.

Table 4.3

$\mu_1 = 6, \mu_2 = 1, \mu_4 = 0.2, A_{14} = 0.5, A_{13} = 0.3,$ $A_{12} = 0.2, R_{2} = 0.4, R_{21} = 0.3, R_{22} = 0.2$				
	A_{12} = 0.2, B_2 =0.4, B_{21} =0.3, B_{23} =0.2, B_{24} =0.1, C_3 =0.6, C_{32} =0.15, C_{31} =0.2,			
	$5, D_4=0.1, D$, -	*	
$D_{43}=0.05$,	,	
	λ=0.1	λ=0.2	λ=0.3	
μ3	Lq	Lq	Lq	
12	7.980468	8.335539	8.73287	
12.1	8.145444	8.51121	8.920744	
12.2	8.312023	8.688806	9.110922	
12.3	8.48029	8.868424	9.303517	
12.4	8.650333	9.050163	9.498645	
12.5	8.822241	9.234128	9.696426	
12.6	8.996106	9.420424	9.896982	
12.7	9.172022	9.609159	10.10044	
12.8	9.350087	9.800446	10.30693	
12.9	9.530399	9.994401	10.51659	
13	9.713061	10.19114	10.72955	

ISSN: 1526-4726

Vol 5 Issue 2(2025)

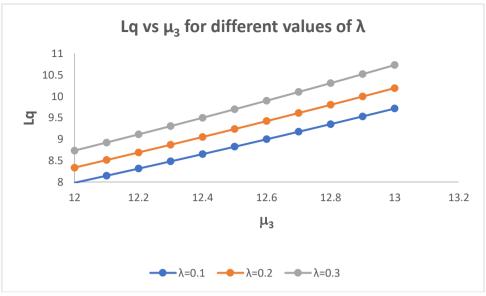


Fig. 4.3

Following can be interpreted from **Table 4.3** and **Fig. 4.3**:

- (i) Mean queue length (L_q) increases with respect to the increase in third server service rate (μ_3) .
- (ii) Mean queue length (L_q) increases with the increase in λ .

4.4. Behaviour of mean queue length of the system (L_q) with respect to service rate of fourth server (μ_4) for different values of arrival rate λ is depicted in Table 4.4 and in Fig. 4.4 keeping the values of other parameters as fixed.

Table 4.4				
$\mu_1 = 6$,	$\mu_1 = 6, \mu_2 = 1, \mu_3 = 2, A_{14} = 0.5, A_{13} = 0.3,$			
$A_{12} =$	$0.2, B_2=0.4$	$, B_{21}=0.3, B_{21}=0.3$	$B_{23}=0.2,$	
$B_{24}=0$	$.1, C_3=0.6,$	$C_{31}=0.2, C_{31}$	32=0.15,	
$C_{34}=0.$	$05, D_4=0.1,$		$0_{42}=0.15$,	
	D ₄₃ :	=0.05	T	
	λ=0.1	λ=0.2	λ=0.3	
μ4	Lq	Lq	Lq	
12	10.10228	9.343082	8.589756	
12.1	9.95728	9.216265	8.480692	
12.2	9.817627	9.094074	8.375574	
12.3	9.682975	8.976213	8.274147	
12.4	9.553011	8.862407	8.176177	
12.5	9.427447	8.752409	8.08145	
12.6	9.30602	8.64599	7.98977	
12.7	9.188489	8.542941	7.900958	
12.8	9.074631	8.443069	7.814846	
12.9	8.964243	8.346198	7.731284	
13	8.857136	8.252163	7.650131	

ISSN: 1526-4726

Vol 5 Issue 2(2025)

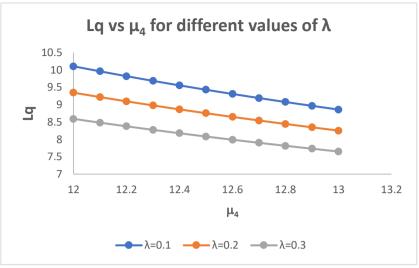


Fig. 4.4

Following can be interpreted from **Table 4.4** and **Fig. 4.4**:

- (i) Mean queue length (L_q) decreases with respect to the increase in fourth server service rate (μ_4) .
- (ii) Mean queue length (L_q) decreases with the increase in λ .

4.5. Behaviour of mean queue length of the system (L_q) with respect to service rate of first server (μ_1) for different values of second server service rate (μ_2) is depicted in Table 4.5 and in Fig. 4.5 keeping the values of other parameters as fixed.

Table 4.5

 $\lambda = 0.1$, $\mu_3 = 2$, $\mu_4 = 5$, $A_{12} = 0.2$, $A_{13} = 0.3$,

$A_{14}=0.5, B_{2}=0.4, B_{21}=0.3, B_{23}=0.2,$				
$B_{24}=0.1$,	$B_{24}=0.1, C_3=0.6, C_{31}=0.2, C_{32}=0.15,$			
$C_{34}=0.05$	$5, D_4 = 0.1, D$	41=0.7, D ₄₂ =	=0.15,	
$D_{43}=0.05$	5			
	$\mu_2=6$ $\mu_2=7$ $\mu_2=9$			
μ1	Lq	Lq	Lq	
4.4	10.05848	5.298269	0.246503	
4.5	10.58011	5.633201	0.378574	
4.6	11.45911	6.138671	0.563847	
4.7	12.78912	6.850152	0.810396	
4.8	14.71593	7.818046	1.128604	
4.9	17.47127	9.114829	1.531892	
5	21.43752	10.84682	2.037748	
5.1	27.27925	13.17435	2.669202	
5.2	36.23594	16.34792	3.456988	
5.3	50.84967	20.77687	4.442787	

Vol 5 Issue 2(2025)

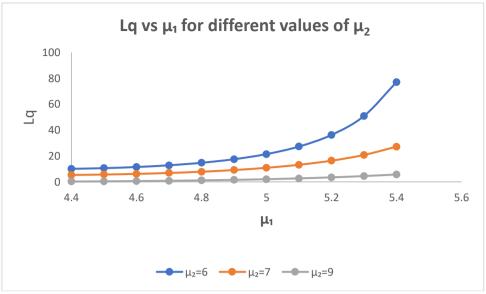


Fig. 4.5

Following can be interpreted from **Table 4.5** and **Fig. 4.5**:

- (i) Mean queue length (L_a) decreases with respect to the increase in first server service rate (μ_1).
- (ii) Mean queue length (L_q) decreases with the increase in second server service rate (μ_2) .

4.6. Behaviour of mean queue length of the system (L_q) with respect to service rate of first server (μ_1) for different values of third server service rate (μ_3) is depicted in Table 4.6 and in Fig. 4.6 keeping the values of other parameters as fixed.

Table 4.6

$\begin{array}{c} \lambda = \! 0.1, \mu_2 = 2, \mu_4 = \! 8.5, A_{12} = 0.2, A_{13} = \! 0.3, \\ A_{14} = \! 0.5, B_2 = \! 0.4, B_{21} = \! 0.3, B_{23} = \! 0.2, \\ B_{24} = \! 0.1, C_3 = \! 0.6, C_{31} = \! 0.2, C_{32} = \! 0.15, \\ C_{34} = \! 0.05, D_4 = \! 0.1, D_{41} = \! 0.7, D_{42} = \! 0.15, \\ D_{43} = \! 0.05 \end{array}$				
	$\mu_3 = 16$ $\mu_3 = 17$ $\mu_3 = 20$			
μ_1	Lq	Lq	Lq	
4	4.680863	5.523582	7.63165	
4.1	4.908278	5.731876	7.798764	
4.2	5.140963	5.945552	7.971221	
4.3	5.37962	6.165234	8.149475	
4.4	5.625002	6.39159	8.334016	
4.5	5.877914	6.625334	8.525362	
4.6	6.139225	6.867238	8.724073	
4.7	6.409872	7.11813	8.930748	
4.8	6.690871	7.37891	9.146033	
4.9	6.983326	7.650551	9.370625	
5	7.288441	7.934115	9.605276	

Vol 5 Issue 2(2025)

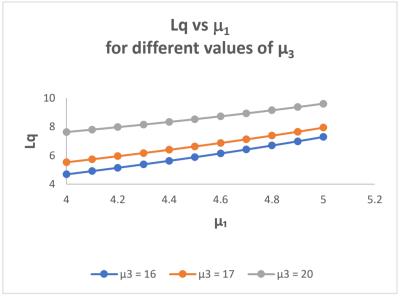


Fig. 4.6

Following can be interpreted from **Table 4.6** and **Fig. 4.6**:

- (i) Mean queue length (L_q) increases with respect to the increase in first server service rate (μ_1) .
- (ii) Mean queue length (L_q) increases with the increase in service rate of third server (μ_3) .

4.7. Behaviour of mean queue length of the system (L_q) with respect to service rate of first server (μ_1) for different values of fourth server service rate (μ_4) is depicted in Table 4.7 and in Fig. 4.7 keeping the values of other parameters as fixed.

Table 4.7

$\begin{array}{c} \lambda {=}0.1, \mu_2 {=} \ 2, \mu_3 {=} 16, A_{12} {=} \ 0.2, A_{13} {=} 0.3, \\ A_{14} {=} 0.5, B_2 {=} 0.4, B_{21} {=} 0.3, B_{23} {=} 0.2, \\ B_{24} {=} 0.1, C_3 {=} 0.6, C_{31} {=} 0.2, C_{32} {=} 0.15, \\ C_{34} {=} 0.05, D_4 {=} 0.1, D_{41} {=} 0.7, D_{42} {=} 0.15, \\ D_{43} {=} 0.05 \end{array}$				
	$m_4 = 8$ $m_4 = 8.5$ $m_4 = 9$			
μ_1	Lq	Lq	Lq	
4	4.729041	4.680863	4.650658	
4.1	4.994137	4.908278	4.847207	
4.2	5.266029	5.140963	5.047918	
4.3	5.545634	5.37962	5.25334	
4.4	5.833938	5.625002	5.464057	
4.5	6.132006	5.877914	5.680692	
4.6	6.440994	6.139225	5.903911	
4.7	6.762156	6.409872	6.134428	
4.8	7.096867	6.690871	6.373013	
4.9	7.44663	6.983326	6.620494	
5	7.813098	7.288441	6.877771	

ISSN: 1526-4726

Vol 5 Issue 2(2025)

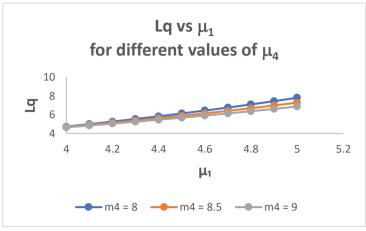


Fig. 4.7

Following can be interpreted from **Table 4.7** and **Fig. 4.7**:

- (i) Mean queue length (L_q) increases with respect to the increase in first server service rate (μ_1) .
- (ii) Mean queue length (L_q) decreases with the increase in service rate of fourth server (μ_4) .

4.8. Behaviour of mean queue length of the system (L_q) with respect to probability D_4 for different values of arrival rate (λ) is depicted in Table 4.8 and in Fig. 4.8 keeping the values of other parameters as fixed.

Table 4.8

μ_1 =3, μ_2 = 4, μ_3 = 5, μ_4 = 0.2, A_{12} = 0.2,				
$A_{13}=0.3$,	$A_{13}=0.3$, $A_{14}=,0.5$, $B_{2}=0.4$, $B_{21}=0.3$,			
$B_{23}=0.2$,	$B_{23}=0.2$, $B_{24}=0.1$, $C_3=0.6$, $C_{31}=0.2$,			
$C_{32}=0.15$	$6, C_{34}=0.05,$	$D_4=0.1, D_4$	1=0.7,	
$D_{42}=0.15$	5, D ₄₃ =0.05			
	$\lambda=0.1$ $\lambda=0.2$ $\lambda=0.3$			
D ₄ Lq Lq Lq				
0.1	18.93478	41.75441	87.26598	
0.15	17.21208	38.52471	80.39224	
0.2	15.58603	35.51016	74.08713	
0.25	14.04991	32.69285	68.29149	
0.3	12.59756	30.05663	62.95362	
0.35	11.22335	27.58698	58.02811	
0.4	9.922103	25.27079	53.47501	
0.45	8.689056	23.0962	49.25905	
0.5	7.519831	21.05246	45.34896	
0.55	6.410388	19.12979	41.71701	
0.6	5.357002	17.31933	38.33848	

ISSN: 1526-4726

Vol 5 Issue 2(2025)

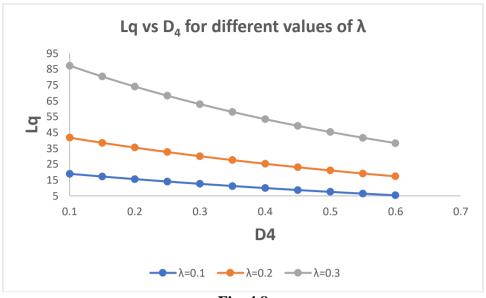


Fig. 4.8

Following can be interpreted from **Table 4.8** and **Fig. 4.8**:

- (i) Mean queue length (L_q) decreases with respect to the increase in probability D_4 .
- (ii) Mean queue length (L_q) increases with the increase in arrival rate (λ) .

References

- [1] Antonioli, R. P., Rodrigues, E. B., Maciel, T. F., Sousa, D. A. and Cavalcanti, F.R.P., 2018, "Adaptive Resource Allocation Framework for User Satisfaction Maximization in Multi-Service Wireless Networks", Telecommunication Systems, 68(2), pp. 259-275.
- [2] Bouchentouf, A. A., and Yahiaoui, L. 2017, "On Feedback Queueing System with Reneging and Retention of Reneged Customers, Multiple Working Vacations and Bernoulli Schedule Vacation Interruption", Arabian Journal of Mathematics, 6(1), pp. 1-11.
- [3] Chassioti, E., Worthington, D. and Glazebrook, K., 2013, "Effects of State-Dependent Balking on Multi-Server Non-Stationary Queueing Systems," Journal of The Operational Research Society, 65 (2), pp. 278-290.
- [4] Kumar, S. and Taneja, G. 2017, "Analysis of a Hierarchical Structured Queuing System with Three Service Channels and Chances of Repetition of Service with Feedback", International Journal of Pure and Applied Mathematics, 115 (2), pp. 383-363.
- [5] Luo, C. and Tang, Y., (2011), "The Recursive Solution for Geom/G/1(E, SV) Queue with Feedback and Single Server Vacation", Acta Mathematicae Applicatae Sinica, English Series, 27 (1), pp. 155-166.
- [6] Morozov, E., 2014, "Stability Analysis of a General State-Dependent Multiserver Queue", Journal of Mathematical Sciences, 200 (4), pp. 462-472.
- [7] Sreekumari, P., Jung, J. and Lee, M., 2016, "An Early Congestion Feedback and Rate Adjustment Schemes for Many-To-One Communication in Cloud-Based Data Center Networks", Photonic Network Communications, 31 (1), pp. 23-35.
- [8] Wei, C.-M., Qin, Y.-Y. and He, L.-X., 2013, "A Discrete-Time \((Geo/G/1\)\) Retrial Queue with Preemptive Resume, Bernoulli Feedback and General Retrial Times", Fuzzy Information & Engineering and Operations Research & Management, 211, Pp. 539-550.
- [9] Yanfeng, G. and Christos, G., 2015, "Multi-Intersection Traffic Light Control with Blocking. Discrete Event Dynamic Systems, 25 (1-2), pp. 7-30.

ISSN: 1526-4726 Vol 5 Issue 2(2025)

[10] Kumar, S. and Taneja, G., 2019, "Mathematical Modelling of Queue Networks for Some Feedback and Booking Systems", Ph. D. thesis, Maharshi Dayanand University, Rohtak, Haryana.

- [11] Kamal et al. ,2023. Mathematical modeling of some feedback queueing systems. Ph. D. thesis, Baba Mastnath University, Asthal Bohar, Rohtak, Haryana.
- [12] Nidhi et al., 2024, "Modeling and analysis of some feedback queueing networks", Ph. D. thesis, Baba Mastnath University, Asthal Bohar, Rohtak, Haryana.