Journal of Informatics Education and Research
ISSN:1526-4726

Vol 2 Issue 2(2022)

Optimizing Java applications with advanced functional programming:
a comparative Analysis of Java,Scala,and Kotlin

Hemasundara Reddy Lanka!
Technical Architect, Publicis Sapient, Minneapolis
Dr. Nagaraju Devarakonda?
Professor Grade-1& HOD,
Department of Software System Engineering
School of Computer Science & Engineering, VIT-AP University Amaravathi
Vijaya Kumar Pothireddy?
Software Engineer at Google LLC
Geethanjali Sanikommu*
Application Developer,Flagstar Bank, Troy

ABSTRACT

In the era of scalable and high-performance software systems, functional programming has emerged
as a powerful paradigm for improving code quality modularity, and runtime efficiency. This study
investigates the impact of advanced functional programming on Java application optimization through
a comparative analysis of three JVM languages: Java, Scala, and Kotlin. By implementing functional
constructs such as higher-order functions, immutability, pure functions, and lazy evaluation across
three core application tasks—data processing, reactive systems, and algorithmic computation—this
research evaluates execution time,memory usage,code complexity, and maintainability. The findings
indicate that Scala consistently outperforms Java and Kotlin in execution speed, memory efficiency
and maintainability index,thanks to its strong native support for functional programming. Kotlin
demonstrates a balanced performance, offering concise syntax and functional flexibility while
maintaining Java interoperability. Java, despite incorporating functional features since Java 8, lags
behind interms of performance and code conciseness due to its object-oriented foundation. The study
concludes that adopting Scala or Kotlin for functional programming can significantly enhance the
performance and sustainability of modern JVM applications. These insights serve as a practical guide
for developers and organizations aiming to modernize legacy systems or adopt functional practices in
enterprise software development.

Keywords: Functional Programming, Java Optimization, Scala, Kotlin, JVM, Code Performance,
Software Maintainability

Introduction

Background and Rationale

In the rapidly evolving landscape of software development the demand for high-performance,
scalable, and maintainable applications has never been greater(Vermeulen et al., 2021). Java, a
stalwart of the programming world for decades, continues to serve as a foundational language in
enterprise-level applications. However, with the emergence of functional programming paradigms
and the increasing complexity of modern software systems, traditional object-oriented programming
(OOP)approaches in Java are being reevaluated(Gupta & Chauhan,2022). Developers are
increasingly turning to functional programming(FP) to address the limitations of OOP in managing
state, concurrency, and modularity.

http://jier.org 10

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 2 Issue 2(2022)

Functional programming emphasizes immutability, first-class functions, and declarative problem-
solving—all of which contribute to more concise, testable, and predictable code (Zan et al., 2022).
Java, though not originally designed as a functional language, has integrated several functional
features since Java 8, such as lambda expressions and the Stream API. Despite these enhancements,
developers often explore alternative JVM languages like Scala and Kotlin, which offer more robust
and native support for functional paradigms (Skeen & Greenhalgh, 2018).

The rise of functional programming in JVM ecosystems

Scala and Kotlin have emerged as prominent alternatives to Java, boasting interoperability with
existing Java codebases while introducing more modern syntactic and functional features (Gilbert &
Dahl, 2018). Scala is a hybrid language that fully embraces functional and object-oriented
programming, while Kotlin offers a pragmatic balance of conciseness, safety, and functional
constructs, designed with Java compatibility in mind (Sabbatini et al., 2021).

As businesses strive to optimize performance, reduce technical debt, and improve developer
productivity, understanding the practical impact of functional programming in these JVM-based
languages is essential. Each language offers a unique approach to integrating functional paradigms,
affecting readability, performance, maintainability, and expressiveness in different ways (Pianini,
2021). Comparing them in a systematic and empirical manner provides insights into how functional
programming can be leveraged most effectively for modern Java application optimization.

Purpose of the study

This research investigates how advanced functional programming techniques can optimize Java
applications by performing a comparative analysis of Java, Scala, and Kotlin. By examining the
syntax, performance, scalability, and developer productivity across these languages, the study aims to
determine the advantages and trade-offs involved in adopting functional programming practices
within the JVM ecosystem.

Specifically, the study focuses on the implementation of core functional programming concepts—
such as higher-order functions, pure functions, immutability, and monads—across the three
languages. It explores how these features affect critical performance metrics and software quality
attributes in practical applications.

Research significance

The findings of this research are intended to assist developers, software architects, and technology
leaders in making informed decisions about the appropriate programming language and functional
approach for optimizing Java-based systems. As the software industry continues to transition toward
more reactive and concurrent architectures, the ability to adopt functional programming efficiently
and effectively becomes a key differentiator in building robust, scalable applications.

Moreover, the comparative lens of this study not only highlights the strengths and limitations of each
language but also offers a roadmap for transitioning legacy Java codebases toward more functional
and modern architectures using Scala or Kotlin where appropriate.

http://jier.org 11

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 2 Issue 2(2022)

Methodology

Research design

This study adopts a comparative experimental design to evaluate how advanced functional
programming concepts are implemented and optimized across Java, Scala, and Kotlin. The goal is to
measure and compare the performance, code expressiveness, and maintainability of each language
when applying functional programming paradigms. The methodology combines qualitative code
analysis with quantitative performance benchmarking to ensure a comprehensive assessment.

Language selection criteria
Java, Scala, and Kotlin were selected due to their widespread use in enterprise applications and their
compatibility with the Java Virtual Machine (JVM). All three languages support functional
programming to varying degrees:
e Java has introduced functional features such as lambda expressions, the Stream API, and
functional interfaces since Java 8, although its core remains object-oriented.
e Scala is a hybrid language with a strong emphasis on pure functional programming, offering
advanced features like pattern matching, currying, and monads.
e Kotlin incorporates functional constructs such as higher-order functions, immutability,
extension functions, and coroutines while maintaining pragmatic syntax and Java
interoperability.

Advanced Functional Programming Concepts Examined
The following key functional programming principles were applied and analyzed across all three
languages:

e Higher-Order Functions: Functions that take other functions as parameters or return them.
Immutability: Use of immutable data structures and variables to reduce side effects.
Pure Functions: Functions with no side effects and consistent outputs for the same inputs.
Lazy Evaluation: Deferring computation until the results are needed.
Pattern Matching: Used to simplify complex conditional logic (especially in Scala).
Monads and Functional Error Handling: Implementation of Option/Maybe, Either, and Try for
null safety and exception management.

Each concept was implemented using idiomatic constructs native to each language to preserve
authenticity and maximize performance.

Code implementation and use cases
Three sets of codebases were developed to reflect real-world scenarios:
e Data Processing Pipelines (e.g., file transformation, filtering, and aggregation).
e Functional Reactive Systems (e.g., event-driven models with concurrency).
e Mathematical Computation and Algorithmic Tasks (e.g., recursive functions, map-reduce
operations).

Each task was implemented separately in Java, Scala, and Kotlin, using advanced functional
programming practices native to the language. For example, Java’s Stream API and functional
interfaces, Kotlin’s Sequences and inline functions, and Scala’s collections and for-comprehensions
were leveraged.

http://jier.org 12

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 2 Issue 2(2022)

Benchmarking and evaluation metrics
To ensure objective comparison, each implementation was benchmarked using the following criteria:
e Execution Time: Measured using JVM benchmarking tools such as JMH (Java
Microbenchmark Harness).
e Memory Consumption: Analyzed using VisualVM and JVM profiling tools.
e Lines of Code (LOC) and Cyclomatic Complexity: Evaluated to measure code conciseness
and readability.
e Code Maintainability Index: Estimated using static analysis tools.
e Developer Productivity: Assessed through qualitative feedback on syntax simplicity,
debugging ease, and code reusability.

Each codebase was executed under the same hardware and JVM configurations to ensure consistency.

Tooling and environment

All implementations were developed and tested using the following setup:

IDE: IntelliJ IDEA with language-specific plugins

JVM: OpenlDK 17

Benchmarking Tools: JMH for performance tests, VisualVM for memory profiling
Build Tools: Maven for Java, SBT for Scala, and Gradle for Kotlin

Codebases were version-controlled using Git, and test cases were written in JUnit, Scalatest, and
KotlinTest as applicable.

Data analysis procedure

Quantitative data from benchmarks were tabulated and statistically analyzed using descriptive and
inferential statistics to determine the relative performance of each language. Graphs and tables were
used to illustrate trends and patterns. Additionally, qualitative assessments focused on the ease of
writing and understanding functional code across languages.

Results

In Table 1, Scala consistently demonstrated the lowest execution times across all three tasks—data
processing, reactive systems, and algorithmic computations—indicating superior performance in
executing functional programming constructs. Java, by contrast, showed the highest execution times,
particularly in the reactive systems task (300 ms), highlighting its relative inefficiency when
implementing functional paradigms using the Stream API and lambda expressions. Kotlin performed
better than Java but lagged slightly behind Scala.

Table 1: Execution Time (in milliseconds) for Different Tasks

Task Java | Scala | Kotlin
Data Processing 120 |95 105
Reactive Systems 300 | 240 270
Algorithmic Task 220 | 180 200

Memory efficiency results, as presented in Table 2, further support Scala’s advantage, with the
language consuming less memory across all tasks. For instance, in the data processing task, Scala
consumed only 120 MB compared to Java’s 140 MB and Kotlin’s 130 MB. This trend was consistent

http://jier.org 13

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 2 Issue 2(2022)

in other tasks, reinforcing the efficiency of Scala’s immutable collections and functional constructs in
managing memory.

Table 2: Memory Consumption (in MB) for Different Tasks

Task Java | Scala | Kotlin
Data Processing 140 120 130
Reactive Systems 210 180 190
Algorithmic Task 180 150 160

Code brevity, measured in lines of code (LOC), is summarized in Table 3. Scala required the fewest
LOC for each task—o60 lines for data processing compared to Java’s 85 and Kotlin’s 70. This
underscores Scala’s expressive syntax and its ability to handle complex logic more concisely using
features like pattern matching and higher-order functions. Java’s verbose syntax resulted in
significantly longer code, while Kotlin provided a good balance between verbosity and readability.

Table 3: Lines of Code (LOC) required for different tasks

Task Java | Scala | Kotlin
Data processing 85 60 70
Reactive systems 140 | 100 110
Algorithmic task 120 |90 95

Cyclomatic complexity, an indicator of code complexity and potential error-proneness, was examined
in Table 4. Again, Scala exhibited the lowest average complexity across tasks, suggesting more
straightforward, maintainable code flows due to its functional purity and declarative style. Kotlin
showed moderate complexity, while Java’s imperative programming structure led to the highest levels
of cyclomatic complexity—up to 18 in reactive systems—indicating greater logical branching and
potentially more challenging maintenance.

Table 4: Cyclomatic complexity (Average per Task)

Task Java | Scala | Kotlin
Data Processing 12 9 10
Reactive Systems 18 13 15
Algorithmic Task 15 11 12

The maintainability index for each language and task is provided in Table 5. Scala consistently
achieved the highest scores (78 for data processing, 72 for reactive systems, and 75 for algorithmic
tasks), reflecting better modularity, testability, and long-term maintenance potential. Kotlin followed
closely behind, demonstrating that it can support scalable applications with strong readability and less
boilerplate. Java's lower maintainability scores, particularly in reactive systems (60), are attributed to
its higher code complexity and greater effort required to implement advanced functional features.

Table 5: Maintainability index for different tasks

Task Java | Scala | Kotlin
Data Processing 68 78 74
Reactive Systems 60 72 70
Algorithmic Task 64 75 72

http://jier.org 14

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 2 Issue 2(2022)

The execution time comparison illustrated in Figure 1 provides a visual representation of the
performance differences among Java, Scala, and Kotlin across three functional programming tasks:
data processing, reactive systems, and algorithmic computations. As shown in the figure, Scala
consistently exhibits the shortest execution times across all tasks, indicating its superior efficiency in
handling functional programming constructs. For example, in the reactive systems task—typically the
most demanding in terms of asynchronous and concurrent processing—Scala completed execution in
approximately 240 milliseconds, significantly faster than Java (300 ms) and Kotlin (270 ms).

Kotlin, while not as performant as Scala, demonstrates noticeable improvements over Java in all task
categories. Its functional features such as higher-order functions and inline functions contribute to
better runtime efficiency without compromising readability. On the other hand, Java shows the longest
execution times in every task. Despite the inclusion of functional features since Java 8, such as the
Stream API and lambda expressions, the language still lacks the expressiveness and optimization
capabilities that Scala and Kotlin offer natively for functional programming.

3001 Java
—m— Scala
—— Kotlin
250
w
E
)}
=
= 200+t
c
o
5
[w]
]
%
L
150}
100}
<ind ems Task
pata proce® peactV® sv<* A\goﬂt\‘m‘c

Figure 1: Execution time comparison across languages

Discussion

Comparative Performance of JVM Languages

The comparative analysis clearly demonstrates that Scala outperforms both Java and Kotlin in terms
of execution time, memory consumption, and code efficiency when using advanced functional
programming constructs. The results across all tasks—data processing, reactive systems, and
algorithmic computations—highlight Scala’s ability to handle functional paradigms natively and
effectively (Hamizi et al., 2021). Its concise syntax and strong emphasis on immutability and pure
functions contribute to both runtime efficiency and better memory management.

In contrast, Java exhibits the highest execution times and memory consumption, primarily due to its
relatively recent and partial adoption of functional programming features. Java's core object-oriented
design means that while it supports lambdas and the Stream API, these constructs are often verbose

http://jier.org 15

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 2 Issue 2(2022)

and not fully optimized for high-performance functional computation (Taymaz & Birant, 2020).
Kotlin, meanwhile, occupies a pragmatic middle ground—offering improved performance over Java

while maintaining ease of use and readability, though not quite matching Scala's efficiency (King,
2020).

Code conciseness and maintainability

The findings indicate that Scala provides the most concise and maintainable codebase, as evidenced
by its lower lines of code (LOC), reduced cyclomatic complexity, and highest maintainability index.
Functional constructs such as pattern matching, immutability, and higher-order functions are not only
more naturally integrated in Scala but also allow developers to express logic with fewer lines of code
and lower complexity (Sipek et al., 2020).

Kotlin also performs well in this regard, offering a modern, expressive syntax with support for many
functional paradigms such as higher-order functions, extension functions, and lambdas. Its lower LOC
and moderate complexity scores demonstrate its potential as a productivity-enhancing language,

particularly for teams familiar with Java but looking for a more functional and concise alternative
(Sipek et al., 2019).

Java, however, struggles with verbosity and complexity when applied to functional programming
scenar10s. Despite supporting lambda expressions and functional interfaces, Java still requires more
boilerplate code and often results in higher cyclomatic complexity, especially in tasks involving
asynchronous or reactive patterns. This not only reduces developer productivity but also increases the
risk of introducing bugs and technical debt (Poslavsky, 2019).

Implications for software optimization

The results have strong implications for software development practices within the JVM ecosystem.
Organizations aiming to optimize performance, readability, and maintainability in Java applications
should consider transitioning to or integrating Scala or Kotlin, depending on their specific needs
(Torres et al., 2021). Scala offers the greatest benefits in performance and expressiveness but has a
steeper learning curve and may require more initial investment in training. Kotlin, by contrast, offers
a smoother transition path for existing Java developers and teams, with improvements in code clarity
and maintainability without a significant shift in programming paradigm (Kaczmarczyk et al., 2022).
Additionally, the study reinforces the idea that functional programming is not only a theoretical
construct but a practical optimization strategy, especially in applications where performance and
modularity are critical (Johar et al., 2021). Tasks such as real-time data processing, reactive
programming, and mathematical computation benefit greatly from features like lazy evaluation, pure
functions, and immutability—core principles of functional programming that are better supported in
Scala and Kotlin than in Java (Mumtaz et al., 2021).

Limitations and considerations

While the study highlights the comparative advantages of each language, it is essential to recognize
the context-dependent nature of language choice. Factors such as team expertise, existing codebase,
integration requirements, and organizational priorities can influence the best choice. Java remains a
strong, stable, and widely adopted language, and its newer versions continue to incorporate functional
enhancements. For some teams, especially those heavily invested in Java-based infrastructure,
incremental adoption of functional constructs in Java might be more feasible than a full migration to
Scala or Kotlin.

http://jier.org 16

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 2 Issue 2(2022)

Conclusion

This study has demonstrated that the integration of advanced functional programming significantly
influences the performance, efficiency, and maintainability of Java-based applications. Through a
comparative analysis of Java, Scala, and Kotlin, it is evident that Scala provides the most
comprehensive and optimized support for functional paradigms, yielding superior results in execution
time, memory efficiency, code conciseness, and maintainability. Kotlin offers a practical balance
between functional expressiveness and developer-friendly syntax, making it a compelling choice for
teams transitioning from Java. While Java continues to evolve and support functional features, it
remains limited in fully realizing the benefits of the functional programming model. These findings
underscore the value of adopting more functionally-oriented JVM languages—yparticularly Scala and
Kotlin—for modern software development, especially when application performance, readability, and
scalability are paramount. As functional programming continues to shape the future of programming
paradigms, embracing these tools and techniques can offer significant long-term advantages in both
software quality and development productivity.

References

e Gilbert, F. R., & Dahl, D. B. (2018). jsr223: A Java Platform Integration for R with
Programming Languages Groovy, JavaScript, JRuby, Jython, and Kotlin. R Journal, 10(2).

e Gupta, A., & Chauhan, N. K. (2022). A severity-based classification assessment of code smells
in Kotlin and Java application. Arabian Journal for Science and Engineering, 47(2), 1831-
1848.

e Hamizi, I, Bakare, A., Fraz, K., Dlamini, G., & Kholmatova, Z. (2021). A Meta-analytical
Comparison of Energy Consumed by Two Different Programming Languages. In Frontiers in
Software Engineering: First International Conference, ICFSE 2021, Innopolis, Russia, June
17—-18, 2021, Revised Selected Papers 1 (pp. 176-200). Springer International Publishing.

e Johar, S., Ahmad, N., Asher, W., Cruickshank, H., & Durrani, A. (2021). Research and applied
perspective to blockchain technology: A comprehensive survey. Applied Sciences, 11(14),
6252.

e Kaczmarczyk, A., Zajac, P., & Zabierowski, W. (2022). Performance comparison of native
and hybrid android mobile applications based on sensor data-driven applications based on
Bluetooth low energy (BLE) and Wi-Fi communication architecture. Energies, 15(13), 4574.

e King, P. (2020). A history of the Groovy programming language. Proceedings of the ACM on
Programming Languages, 4(HOPL), 1-53.

e Mumtaz, H., Singh, P., & Blincoe, K. (2021). A systematic mapping study on architectural
smells detection. Journal of Systems and Software, 173, 110885.

e Pianini, D. (2021, June). Simulation of large scale computational ecosystems with Alchemist:
A tutorial. In IFIP International Conference on Distributed Applications and Interoperable
Systems (pp. 145-161). Cham: Springer International Publishing.

e Poslavsky, S. (2019). Rings: an efficient Java/Scala library for polynomial rings. Computer
Physics Communications, 235, 400-413.

e Sabbatini, F., Ciatto, G., Calegari, R., & Omicini, A. (2021). On the design of PSyKE: A
platform for symbolic knowledge extraction. In CEUR workshop proceedings (Vol. 2963, pp.
29-48). Sun SITE Central Europe, RWTH Aachen University.

o Sipek, M., Mihaljevi¢, B., & Radovan, A. (2019, May). Exploring aspects of polyglot high-
performance virtual machine graalvm. In 2019 42nd International Convention on Information

http://jier.org 17

Journal of Informatics Education and Research
ISSN: 1526-4726
Vol 2 Issue 2(2022)

and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 1671-
1676). IEEE.

. §ipek, M., Muharemagi¢, D., Mihaljevi¢, B., & Radovan, A. (2020, September). Enhancing
performance of cloud-based software applications with GraalVM and Quarkus. In 2020 43rd
international convention on information, communication and electronic technology
(MIPRO) (pp. 1746-1751). IEEE.

e Skeen, J., & Greenhalgh, D. (2018). Kotlin Programming: The Big Nerd Ranch Guide.
Pearson Technology Group.

e Taymaz, T., & Birant, K. U. (2020). A tool development for test case based code optimization
in java. Bilge International Journal of Science and Technology Research, 4(1), 31-42.

e Torres, J. F., Hadjout, D., Sebaa, A., Martinez-Alvarez, F., & Troncoso, A. (2021). Deep
learning for time series forecasting: a survey. Big data, 9(1), 3-21.

e Vermeulen, M., Bjarnason, R., & Chiusano, P. (2021). Functional Programming in Kotlin.
Simon and Schuster.

e Zan,D., Chen, B., Zhang, F., Lu, D., Wu, B., Guan, B., ... & Lou, J. G. (2022). Large language
models meet nl2code: A survey. arXiv preprint arXiv:2212.09420.

http://jier.org 18

