
Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

1553

http://jier.org

Automated Grading and Feedback Systems for Programming in

Higher Education Using Machine Learning.

1Dr. Kavita,

Assistant Professor,

Department of Commerce,

St. Joseph's Girls Degree B.Ed. College,

Sardhana (U.P) - 250342, India.

kavita.makhi@gmail.com
2Dr. Rajesh Kumar,

Assistant Professor,

Department of Computer Science,

Tecnia Institute of Advanced Studies, Delhi - 110085, India.

rajeshasuszen@gmail.com
3Anupam Sinha,

Assistant Professor,

Amity Law School, Amity University,

Patna, Bihar - 801503, India.

asinha@ptn.amity.edu
4Dr. Tamijeselvan S.,

Assistant Professor in Radiography,

Mother Theresa PG and Research Institute of Health Sciences,

Puducherry - 605006, India.

tamije1970@gmail.com
5Mr. Samuel,

Assistant Professor,

Department of Commerce,

St. Claret College Autonomous, Bengaluru - 560013,

Karnataka, India.

samuelsamson0424@gmail.com
6J. Ruby Elizabeth,

Assistant Professor,

Department of Computer Science and Business Systems,

Nehru Institute of Engineering and Technology,

Coimbatore - 641105, India.

nietjrubyelizabeth@nehrucolleges.com

ABSTRACT:

Evaluating programming tasks in higher education is difficult, sometimes characterised by

inconsistency and insufficient feedback, hence constraining student development. This study

introduces an automated grading and feedback system powered by machine learning to tackle these

difficulties. The system utilises supervised learning to forecast grades with 98.5% precision,

including test case analysis, structural validation, and natural language processing for feedback

production. The suggested methodology offers enhanced precision (97.8%) and recall (98.3%)

relative to existing methods, guaranteeing grading accuracy and constructive feedback. The results

indicate its efficacy in managing extensive submissions with minimal interruption, providing

scalability and stability. The research considerably improves the grading process in higher

education by mitigating the drawbacks of previous techniques, including prejudice and

inefficiency, hence promoting superior learning results. Future initiatives involve enhancing

support for multi-language programming and improving feedback mechanisms to provide

mailto:nietjrubyelizabeth@nehrucolleges.com

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

1554

http://jier.org

adaptation across various educational environments.

Keywords: Automated grading, Feedback generation, Supervised Learning, Natural Language

Processing, AI-based grading systems, Deep Learning, Code Feedback systems.

I.INTRODUCTION

Assessing programming assignments is an important yet resource-demanding section of computer

science education, frequently limited by subjectivity and inefficiency. The rapid increase in student

enrolment has intensified pressure on conventional grading methods, highlighting the necessity

for automated solutions. This study deals with these issues by developing a machine learning

system that automates the grading and feedback process for programming assignments. The

system utilises supervised learning for grading and natural language processing for feedback,

ensuring consistent, accurate, and rapid evaluation. This method improves learning outcomes,

decreases teacher workload, and fosters a scalable, equitable, and efficient grading process by

transcending the constraints of manual grading. Automated feedback systems [1] improve

education by delivering individualised, data-informed feedback. Research indicates distribution

across several domains and applications, underscoring the necessity for integrated frameworks and

more individualised, student-centric solutions. No specific measurements were supplied for

evaluating system efficacy. The automated evaluation of paper-based examinations [2] provides

efficiency and equality. A system attained a 99.89% success rate for multiple-choice responses

and a 95.40% success rate for short replies. The study's generalisability to other question forms is

limited, which can be addressed by enhancing AI evaluation skills. CODE, an automated grading

system [3], was beneficial in programming classes, resulting in improved learning outcomes from

3,300 student submissions. Limitations encompass difficulties in first usage and diverse
programming competence, in contrast to systems that dynamically adjust to user requirements and

competence. Computer vision-based grading systems [4] enhance efficiency in agricultural post-

production activities. Despite progress, obstacles remain in precision and scalability. This is

different from AI grading systems that can manage diverse datasets and provide uniform

performance across applications. GRAD-AI utilises artificial intelligence to deliver precise and

prompt feedback for programming projects, including techniques such as TF-IDF and K-means

clustering [5]. Strengths included real-time feedback and gap detection, although scalability and

adaptation to other areas are still insufficiently examined. Automated assessment of class diagrams

guarantees equity and uniformity [6]. Results underscored the necessity of tailoring grading

methodologies to student proficiency and integrating alternative solutions. Challenges in

integrating many models differ between AI systems employing dynamic clustering for varied

solutions. AI-driven grading methods for open book examinations [7] demonstrate significant

consistency with human evaluation, improving objectivity and efficiency. However, scalability

across different examination formats and adaption to various educational frameworks remains

inadequately investigated, requiring more enhancement. Automated text-based grading systems

[8] utilising NLP and machine learning concentrate on essay evaluations, showcasing rapid and

efficient evaluation. The research fails to investigate adaptive grading for various question kinds

and its wider educational scalability. Automated short answer grading systems [9] utilise machine

learning for accurate and quick assessment, crucial for MOOCs. Limitations encompass dataset

standardisation and inadequate personalisation, in contrast to more flexible, scalable systems that

respond to diverse student requirements. Deep learning models [10] attain equal accuracy across

users in evaluating histological images, facilitating automation in experimental research. Still,

problems encompass domain-specific applicability and inadequate study of cross-domain

scalability, highlighting the necessity for enhanced model adaptability. Automated peer

assessment grading systems with reliability detection [11] improve data quality and precision (0.89

accuracy). Still, the capacity to adapt to smaller datasets and varied educational environments

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

1555

http://jier.org

necessitates more investigation to fully utilise the system's potential in more extensive scenarios.

The UNCode [12] auto-grader for Jupyter notebooks delivers immediate feedback, enhancing

students' coding proficiency. Despite favourable response, limitations encompass its applicability

to certain courses and inadequate investigation of its efficacy across wider fields and assignment

categories. Edgar, a contemporary Automated Programming Assessment System (APAS) [13],

tackles issues of scalability, dynamic analysis, and plagiarism detection in online program

evaluation. Although beneficial, the broader adaptability across other educational environments

and various frameworks remains insufficiently examined. This study [14] assesses automated

grading systems for coding assignments, emphasising grading forms and test case designs. While

informative for educators, it lacks a comprehensive review of tool performance indicators and

scalability for various programming requirements. The Virtual Programming Lab (VPL) [15]

utilising JUnit tests enables automated grading of programming assessments in Object-Oriented

Programming courses, yielding satisfying outcomes. However, it concentrates only on OOP

situations, constraining insights into its usefulness across wider programming paradigms. A Kotlin

e-learning framework [16] facilitates interactive classes and automated assessment. Although

advantageous, it is aimed at students with Java knowledge, lacks flexibility for beginners, and

offers restricted scalability to other mobile application programming languages. CodeMaster, a

complimentary tool for evaluating block-based programming (App Inventor, Snap!), provides

rubrics based in computational thinking. The emphasis on static analysis is captivating; yet, it is

inadequate in dynamic evaluation skills and usability for sophisticated text-based programming.

The analysed articles emphasise progress in automated grading systems for programming, essay-

based, and block-based activities, concentrating on scalability, grading methodologies, and

computational thinking. However, inadequacies in flexibility, dynamic evaluation, and varied

educational environments remain. This research introduces an innovative AI-driven grading

method for open-book examinations, aimed at improving fairness, scalability, and educational

effectiveness.

II.PROPOSED METHOD

The suggested method incorporates machine learning and natural language processing to automate

the evaluation and feedback mechanism for programming assignments. It utilises supervised

learning algorithms to assess code correctness, execution performance, and structural quality,

hence assuring precision in grade prediction. Feedback generating system using NLP to deliver

tailored, constructive feedback obtained through code analysis. The system's architecture

incorporates elements such as test case validation, complexity analysis, and scalability to

efficiently manage large-scale submissions. The suggested method mitigates the weaknesses of

conventional grading systems, enhancing educational results and optimising the assessment

process in programming education. The flowchart of proposed system shown in Figure 1.

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

1556

http://jier.org

Figure 1. Flowchart of Proposed System.

A. Data Collection and data Preprocessing:

The study datasets are obtained from the Kaggle platform, recognised for its extensive diverse

collections of instructional programming data. These datasets often comprise code submissions,

error logs, execution time spans, and relevant information such as student evaluations or grades.

Data preparation is an essential phase to guarantee high-quality and noise-free inputs for future

analysis. This involves addressing missing or incomplete records, standardising code formats in

order to eliminate syntactic diversity, and executing tokenisation for consistent representation of

the programming language. Normalisation methods are utilised on numerical data to ensure

consistency. Furthermore, outlier identification methods are utilised to eliminate incorrect data

points, and categorical variables are encoded for numerical analysis. Data is partitioned into

training, validation, and testing subsets to guarantee model generalisability.

• Normalization (Min-Max Scaling):

For a given image X (1):

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1)

• Tokenization (Code Parsing) (2):

𝑇𝑜𝑘𝑒𝑛𝑠 = 𝐿𝑒𝑥𝑒𝑟(𝐶) (2)

Where IN (2), 𝐶 represents the raw code, and Lexer denotes a lexical analyser.

• Categorical Encoding (One-Hot Encoding) (3):

O(i, j) = {
1 if j = C(i)
0 otherwise

 (3)

• Outlier Detection (Z-Score) (4):

𝑍 =
𝑋 − 𝜇

𝜎
 (4)

Where in (4), μ denotes the mean and σ represents the standard deviation.

B. Feature Engineering:

Feature selection and feature extraction concentrate on selecting the most important features within

the dataset to improve model performance and minimise computational complexity. Feature

selection is performed by statistical tests and machine learning algorithms to evaluate the

importance of raw characteristics. Feature extraction generates new features from raw data by

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

1557

http://jier.org

mathematical manipulations, including embeddings for textual data and polynomial expansions

for numerical characteristics. Principal Component Analysis (PCA) and Term Frequency-Inverse

Document Frequency (TF-IDF) are frequently utilised to lower dimensionality and identify

significant patterns. The final feature set is selected based on significance ratings derived from

mutual information or feature importance scores from models such as Random Forest as shown in

Table 1.

• Mutual Information for Feature Selection (5):

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑃(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑃(𝑥, 𝑦)

𝑃(𝑥)𝑃(𝑦)
)

𝑦∈𝑌𝑥∈𝑋

 (5)

• TF-IDF for Feature Extraction (6):

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑) ⋅ 𝑙𝑜𝑔 (
𝑁

𝐷𝐹(𝑡)
) (6)

Where in (6), 𝑇𝐹(𝑡, 𝑑) represents term frequency, N is the total number of documents, and 𝐷𝐹(𝑡)

signifies document frequency.

• PCA for Dimensionality Reduction (7):

𝑍 = 𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑊 (7)

From (7), Z is the reduced 𝑛 × 𝑘 matrix that represents the dataset in k-dimensional space.

Table.1 Feature Extraction Table.

Raw Feature Derived Feature Importance Score

Code Length Normalized Code Length 0.85

Error Frequency Error Type Frequency 0.78

Compilation Time Logarithm of Compilation Time 0.72

Keyword Frequency TF-IDF Keyword Weighting 0.65

Student Feedback Sentiment Score 0.59

C. Design and Training of Model:

1. Code Evaluation Techniques:

Code evaluation entails the analysis of programming contributions to determine their accuracy,

performance, and compliance with best practices. This procedure often encompasses test case

execution, complexity assessment, and structural verification. Code is executed within a regulated

sandbox environment to guarantee security and repeatability. Test case execution entails

comparing the program's output with already established expected outputs and assigning a score

depending on precision. Complexity analysis evaluates time and space efficiency using asymptotic
notation. Structural validation guarantees compliance with coding rules by employing methods

like abstract syntax tree (AST) analysis to identify abnormalities.

• Test Case Accuracy (Output Match Percentage):

𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑠𝑠𝑒𝑑 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠
× 100 (8)

• Time Complexity (Big-O Notation) (9):

𝑇(𝑛) = 𝑂(𝑓(𝑛)) (9)

Where in (9), 𝑓(𝑛) is the algorithm's growth rate.

• Structural Validation Using AST (10):

𝑆𝑐𝑜𝑟𝑒𝐴𝑆𝑇 =
𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠
× 100 (10)

2. Feedback Generation Mechanism:

The feedback generating technique emphasises delivering important, helpful insights to students

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

1558

http://jier.org

derived from the examination of their code. This entails recognising mistakes, proposing

enhancements, and presenting instances of accurate solutions. Feedback is produced by rule-based

systems or machine learning models designed to identify particular coding patterns and anti-

patterns. Sentiment analysis and customised language models are frequently utilised to guarantee

that feedback is both helpful and comprehensible.

• Feedback Quality Score (11):

𝑄 =
𝐻𝑒𝑙𝑝𝑓𝑢𝑙 𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠
× 100 (11)

3. Supervised Learning for Grading:

Supervised learning models are developed to automatically evaluate programming assignments by

examining labelled data that includes code submissions and their corresponding grades. Attributes

including code accuracy, complexity, execution duration, and compliance with style rules are

retrieved and utilised as input. Present algorithms encompass support vector machines (SVM),

random forests, and gradient-boosted decision trees. The model acquires a mapping function from

input characteristics to output grades.

• Prediction Function in SVM (12):

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

𝑛

𝑖=1

+ 𝑏) (12)

Where in (12), 𝐾(𝑥𝑖 , 𝑥) denotes the kernel function, and 𝛼𝑖𝑦𝑖 represent parameters acquired during

the training process.

• Loss Function for Gradient Boosting (13):

𝐿(𝑦, 𝑦̂) =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 (13)

III.RESULT AND DISCUSSION

1. Evaluation Results:

The assessment of the proposed automated grading system was performed on a programming

dataset including 5,000 samples, with 80% allocated for training and 20% for testing. The system

attained superior performance across assessment measures as shown in Table 2. The training phase

demonstrated an accuracy of 98.5%, signifying excellent differentiation of correct and erroneous

responses. Precision and recall were determined at 97.8% and 98.3%, respectively, indicating

minimal false positives and false negatives in feedback extraction. The F1-score of 98.1%

indicated an equitable compromise between accuracy and recall. Furthermore, the RMSE for

grading prediction was 0.12, indicating a high level of accuracy in point allocation relative to

manual grading.

Table 2. Training Results of Training Dataset

Metric Value

Accuracy 98.5%

Precision 97.8%

Recall 98.3%

F1-Score 98.1%

RMSE (Grading) 0.12

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

1559

http://jier.org

2. Comparative Analysis with Traditional Grading Approaches:

A comparative study was performed by evaluating the suggested system against conventional

grading methods utilising baseline models like logistic regression, support vector machines

(SVM), and decision trees. Although conventional models attained reasonable accuracy, the

suggested technique surpassed them considerably as shown in Table 3, Figure 2, Figure 3. The use

of machine learning methodologies, including gradient-boosted decision trees and NLP-driven

feedback systems, resulted in enhanced precision and recall in grading and feedback processes.

The suggested method demonstrated superior flexibility in assessing various programming

techniques and consistently delivered detailed feedback, beyond the constraints of human or semi-

automated grading systems.

Table 3. Comparative Analysis of Key Performance Metrics

Model Accuracy Precision Recall F1-Score RMSE

Logistic Regression 85.2% 84.5% 84.8% 84.6% 0.45

SVM 89.3% 87.9% 88.6% 88.2% 0.32

Decision Trees 86.7% 85.5% 86.0% 85.7% 0.41

Proposed System 98.5% 97.8% 98.3% 98.1% 0.12

Figure 2. F1 Score Comparison.

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

1560

http://jier.org

Figure 3. Comparison of Accuracy Across Models.

3. Scalability and Efficiency:

The suggested system is engineered to manage extensive datasets and simultaneous submissions,

rendering it very scalable. The system employs distributed computing frameworks, allowing it to

process more than 10,000 entries per hour with minimal interruption. The grading pipeline is

enhanced by asynchronous task scheduling and parallel processing, guaranteeing effective

resource utilisation. Benchmarks shown in Figure 4, indicate that the system attains grading speeds

that are 40% quicker than conventional manual or semi-automated methods, maintaining stable

accuracy and performance as workloads increase.

Figure 4. Scalability and Efficiency.

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

1561

http://jier.org

4. Impact on Students and Faculty:

The suggested approach significantly improves the learning experience for students by delivering

immediate, comprehensive, and tailored feedback on their programming tasks as shown in Figure

5. This enables students to rapidly recognise and rectify their errors, hence enhancing their

comprehension of programming topics. The method reduces the manual grading workload for

faculty, allowing them to concentrate on enhancing the curriculum and providing individualised

student assistance. The approach guarantees equitable and consistent grading, enhancing

confidence and transparency between students and instructors, hence increasing overall

satisfaction and educational results.

Figure 5. Impact on Students and Faculty.

IV.CONCLUSION

This study has created a sophisticated automated grading and feedback system for programming

in higher education utilising machine learning. Significant findings indicate that the suggested

approach surpasses conventional techniques in accuracy, precision, and quality of feedback.

Contributions to the discipline encompass the use of machine learning for automated assessment

and natural language processing for individualised feedback. Practical applications encompass

accelerated grading, enhanced student comprehension, and lowered instructor effort. The system

has exceptional scalability; however, enhancements are required in multi-language programming

support and flexibility. Future studies should investigate improving grading reliability for complex

coding patterns and boosting dataset variety for wider application.

V.REFERENCE

[1] G. Deeva, D. Bogdanova, E. Serral, M. Snoeck, and J. De Weerdt, ‘A review of

automated feedback systems for learners: Classification framework, challenges and

opportunities’, Comput Educ, vol. 162, p. 104094, Mar. 2021, doi:

10.1016/J.COMPEDU.2020.104094.

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

1562

http://jier.org

[2] V. Jocovic, B. Nikolic, and N. Bacanin, ‘Software System for Automatic Grading of

Paper Tests’, Electronics 2023, Vol. 12, Page 4080, vol. 12, no. 19, p. 4080, Sep.

2023, doi: 10.3390/ELECTRONICS12194080.

[3] D. M. Rao, ‘Experiences with Auto-Grading in a Systems Course’, Proceedings -

Frontiers in Education Conference, FIE, vol. 2019-October, Oct. 2019, doi:

10.1109/FIE43999.2019.9028450.

[4] A. Sivaranjani, S. Senthilrani, B. Ashok kumar, and A. Senthil Murugan, ‘An

Overview of Various Computer Vision-based Grading System for Various Agricultural

Products’, J Hortic Sci Biotechnol, vol. 97, no. 2, pp. 137–159, Mar. 2022, doi:

10.1080/14620316.2021.1970631.

[5] I. Gambo, F. J. Abegunde, O. Gambo, R. O. Ogundokun, A. N. Babatunde, and C. C.

Lee, ‘GRAD-AI: An automated grading tool for code assessment and feedback in

programming course’, Educ Inf Technol (Dordr), pp. 1–41, Dec. 2024, doi:

10.1007/S10639-024-13218-5/METRICS.

[6] W. Bian, O. Alam, and J. Kienzle, ‘Is automated grading of models effective?:

Assessing automated grading of class diagrams’, Proceedings - 23rd ACM/IEEE

International Conference on Model Driven Engineering Languages and Systems,

MODELS 2020, pp. 365–376, Oct. 2020, doi: 10.1145/3365438.3410944.

[7] A. Dimari, N. Tyagi, M. Davanageri, R. Kukreti, R. Yadav, and H. Dimari, ‘AI-Based

Automated Grading Systems for open book examination system: Implications for

Assessment in Higher Education’, 2024 International Conference on Knowledge

Engineering and Communication Systems, ICKECS 2024, 2024, doi:

10.1109/ICKECS61492.2024.10616490.

[8] G. Blessing, A. Azeta, S. Misra, F. Chigozie, and R. Ahuja, ‘A Machine Learning

Prediction of Automatic Text Based Assessment for Open and Distance Learning: A

Review’, Advances in Intelligent Systems and Computing, vol. 1180 AISC, pp. 369–

380, 2021, doi: 10.1007/978-3-030-49339-4_38.

[9] L. B. Galhardi and J. D. Brancher, ‘Machine Learning Approach for Automatic Short

Answer Grading: A Systematic Review’, Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 11238 LNAI, pp. 380–391, 2018, doi: 10.1007/978-3-030-

03928-8_31.

[10] L. Power, L. Acevedo, R. Yamashita, D. Rubin, I. Martin, and A. Barbero, ‘Deep

learning enables the automation of grading histological tissue engineered cartilage

images for quality control standardization’, Osteoarthritis Cartilage, vol. 29, no. 3,

pp. 433–443, Mar. 2021, doi: 10.1016/J.JOCA.2020.12.018.

[11] Z. Lin, H. Yan, and L. Zhao, ‘Exploring an effective automated grading model with

reliability detection for large-scale online peer assessment’, J Comput Assist Learn,

vol. 40, no. 4, pp. 1535–1551, Aug. 2024, doi: 10.1111/JCAL.12970.

[12] C. D. González-Carrillo, F. Restrepo-Calle, J. J. Ramírez-Echeverry, and F. A.

González, ‘Automatic Grading Tool for Jupyter Notebooks in Artificial Intelligence

Courses’, Sustainability 2021, Vol. 13, Page 12050, vol. 13, no. 21, p. 12050, Oct.

2021, doi: 10.3390/SU132112050.

[13] F. Grandi, T. Mikkonen, I. M. Mekterovi´c, L. Brki´cbrki´c, and M. Horvat, ‘Scaling

Automated Programming Assessment Systems’, Electronics 2023, Vol. 12, Page 942,

vol. 12, no. 4, p. 942, Feb. 2023, doi: 10.3390/ELECTRONICS12040942.

[14] A. Agrawal and B. Reed, ‘A survey on grading format of automated grading tools for

programming assignments’, ICERI2022 Proceedings, vol. 1, pp. 7506–7514, Dec.

2022, doi: 10.21125/iceri.2022.1912.

[15] J. L. Subirats, G. Luque-Polo, and R. M. Luque-Baena, ‘Conducting Final

Programming Exams with Auto-Grading and Code Evaluation Tools’, Lecture Notes

Journal of Informatics Education and Research

ISSN: 1526-4726

Vol 5 Issue 1 (2025)

1563

http://jier.org

in Networks and Systems, vol. 957 LNNS, pp. 269–278, 2024, doi: 10.1007/978-3-

031-75016-8_25.

[16] ‘University of Kragujevac Digital Archive: AN AUTOMATED GRADING

FRAMEWORK FOR THE MOBILE DEVELOPMENT PROGRAMMING

LANGUAGE KOTLIN’. Accessed: Jan. 24, 2025. [Online]. Available:

https://scidar.kg.ac.rs/handle/123456789/19059

