
Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 5 Issue 1 (2025) 
 

1553 
 

http://jier.org 

Automated Grading and Feedback Systems for Programming in 

Higher Education Using Machine Learning. 
 

1Dr. Kavita, 

Assistant Professor, 

Department of Commerce, 

St. Joseph's Girls Degree B.Ed. College, 

Sardhana (U.P) - 250342, India. 

kavita.makhi@gmail.com 
2Dr. Rajesh Kumar, 

Assistant Professor, 

Department of Computer Science, 

Tecnia Institute of Advanced Studies, Delhi - 110085, India. 

rajeshasuszen@gmail.com 
3Anupam Sinha, 

Assistant Professor, 

Amity Law School, Amity University, 

Patna, Bihar - 801503, India. 

asinha@ptn.amity.edu 
4Dr. Tamijeselvan S., 

Assistant Professor in Radiography, 

Mother Theresa PG and Research Institute of Health Sciences, 

Puducherry - 605006, India. 

tamije1970@gmail.com 
5Mr. Samuel, 

Assistant Professor, 

Department of Commerce, 

St. Claret College Autonomous, Bengaluru - 560013, 

Karnataka, India. 

samuelsamson0424@gmail.com 
6J. Ruby Elizabeth, 

Assistant Professor, 

Department of Computer Science and Business Systems, 

Nehru Institute of Engineering and Technology, 

Coimbatore - 641105, India. 

nietjrubyelizabeth@nehrucolleges.com 

 

ABSTRACT: 

Evaluating programming tasks in higher education is difficult, sometimes characterised by 

inconsistency and insufficient feedback, hence constraining student development. This study 

introduces an automated grading and feedback system powered by machine learning to tackle these 

difficulties. The system utilises supervised learning to forecast grades with 98.5% precision, 

including test case analysis, structural validation, and natural language processing for feedback 

production. The suggested methodology offers enhanced precision (97.8%) and recall (98.3%) 

relative to existing methods, guaranteeing grading accuracy and constructive feedback. The results 

indicate its efficacy in managing extensive submissions with minimal interruption, providing 

scalability and stability. The research considerably improves the grading process in higher 

education by mitigating the drawbacks of previous techniques, including prejudice and 

inefficiency, hence promoting superior learning results. Future initiatives involve enhancing 

support for multi-language programming and improving feedback mechanisms to provide 
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adaptation across various educational environments. 

 

Keywords: Automated grading, Feedback generation, Supervised Learning, Natural Language 

Processing, AI-based grading systems, Deep Learning, Code Feedback systems. 
 

I.INTRODUCTION 

Assessing programming assignments is an important yet resource-demanding section of computer 

science education, frequently limited by subjectivity and inefficiency. The rapid increase in student 

enrolment has intensified pressure on conventional grading methods, highlighting the necessity 

for automated solutions. This study deals with these issues by developing a machine learning 

system that automates the grading and feedback process for programming assignments. The 

system utilises supervised learning for grading and natural language processing for feedback, 

ensuring consistent, accurate, and rapid evaluation. This method improves learning outcomes, 

decreases teacher workload, and fosters a scalable, equitable, and efficient grading process by 

transcending the constraints of manual grading. Automated feedback systems [1] improve 

education by delivering individualised, data-informed feedback. Research indicates distribution 

across several domains and applications, underscoring the necessity for integrated frameworks and 

more individualised, student-centric solutions. No specific measurements were supplied for 

evaluating system efficacy. The automated evaluation of paper-based examinations [2] provides 

efficiency and equality. A system attained a 99.89% success rate for multiple-choice responses 

and a 95.40% success rate for short replies. The study's generalisability to other question forms is 

limited, which can be addressed by enhancing AI evaluation skills. CODE, an automated grading 

system [3], was beneficial in programming classes, resulting in improved learning outcomes from 

3,300 student submissions. Limitations encompass difficulties in first usage and diverse 
programming competence, in contrast to systems that dynamically adjust to user requirements and 

competence. Computer vision-based grading systems [4] enhance efficiency in agricultural post-

production activities. Despite progress, obstacles remain in precision and scalability. This is 

different from AI grading systems that can manage diverse datasets and provide uniform 

performance across applications. GRAD-AI utilises artificial intelligence to deliver precise and 

prompt feedback for programming projects, including techniques such as TF-IDF and K-means 

clustering [5]. Strengths included real-time feedback and gap detection, although scalability and 

adaptation to other areas are still insufficiently examined. Automated assessment of class diagrams 

guarantees equity and uniformity [6]. Results underscored the necessity of tailoring grading 

methodologies to student proficiency and integrating alternative solutions. Challenges in 

integrating many models differ between AI systems employing dynamic clustering for varied 

solutions. AI-driven grading methods for open book examinations [7] demonstrate significant 

consistency with human evaluation, improving objectivity and efficiency. However, scalability 

across different examination formats and adaption to various educational frameworks remains 

inadequately investigated, requiring more enhancement. Automated text-based grading systems 

[8] utilising NLP and machine learning concentrate on essay evaluations, showcasing rapid and 

efficient evaluation. The research fails to investigate adaptive grading for various question kinds 

and its wider educational scalability. Automated short answer grading systems [9] utilise machine 

learning for accurate and quick assessment, crucial for MOOCs. Limitations encompass dataset 

standardisation and inadequate personalisation, in contrast to more flexible, scalable systems that 

respond to diverse student requirements. Deep learning models [10] attain equal accuracy across 

users in evaluating histological images, facilitating automation in experimental research. Still, 

problems encompass domain-specific applicability and inadequate study of cross-domain 

scalability, highlighting the necessity for enhanced model adaptability. Automated peer  

 

assessment grading systems with reliability detection [11] improve data quality and precision (0.89 

accuracy). Still, the capacity to adapt to smaller datasets and varied educational environments 
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necessitates more investigation to fully utilise the system's potential in more extensive scenarios. 

The UNCode [12] auto-grader for Jupyter notebooks delivers immediate feedback, enhancing 

students' coding proficiency. Despite favourable response, limitations encompass its applicability 

to certain courses and inadequate investigation of its efficacy across wider fields and assignment 

categories. Edgar, a contemporary Automated Programming Assessment System (APAS) [13], 

tackles issues of scalability, dynamic analysis, and plagiarism detection in online program 

evaluation. Although beneficial, the broader adaptability across other educational environments 

and various frameworks remains insufficiently examined. This study [14] assesses automated 

grading systems for coding assignments, emphasising grading forms and test case designs. While 

informative for educators, it lacks a comprehensive review of tool performance indicators and 

scalability for various programming requirements. The Virtual Programming Lab (VPL) [15] 

utilising JUnit tests enables automated grading of programming assessments in Object-Oriented 

Programming courses, yielding satisfying outcomes. However, it concentrates only on OOP 

situations, constraining insights into its usefulness across wider programming paradigms. A Kotlin 

e-learning framework [16] facilitates interactive classes and automated assessment. Although 

advantageous, it is aimed at students with Java knowledge, lacks flexibility for beginners, and 

offers restricted scalability to other mobile application programming languages. CodeMaster, a 

complimentary tool for evaluating block-based programming (App Inventor, Snap!), provides 

rubrics based in computational thinking. The emphasis on static analysis is captivating; yet, it is 

inadequate in dynamic evaluation skills and usability for sophisticated text-based programming. 

The analysed articles emphasise progress in automated grading systems for programming, essay-

based, and block-based activities, concentrating on scalability, grading methodologies, and 

computational thinking. However, inadequacies in flexibility, dynamic evaluation, and varied 

educational environments remain. This research introduces an innovative AI-driven grading 

method for open-book examinations, aimed at improving fairness, scalability, and educational 

effectiveness. 

 

II.PROPOSED METHOD 

The suggested method incorporates machine learning and natural language processing to automate 

the evaluation and feedback mechanism for programming assignments. It utilises supervised 

learning algorithms to assess code correctness, execution performance, and structural quality, 

hence assuring precision in grade prediction. Feedback generating system using NLP to deliver 

tailored, constructive feedback obtained through code analysis. The system's architecture 

incorporates elements such as test case validation, complexity analysis, and scalability to 

efficiently manage large-scale submissions. The suggested method mitigates the weaknesses of 

conventional grading systems, enhancing educational results and optimising the assessment 

process in programming education. The flowchart of proposed system shown in Figure 1. 



Journal of Informatics Education and Research 

ISSN: 1526-4726 

Vol 5 Issue 1 (2025) 
 

1556 
 

http://jier.org 

 
Figure 1. Flowchart of Proposed System. 

 

A. Data Collection and data Preprocessing: 

The study datasets are obtained from the Kaggle platform, recognised for its extensive diverse 

collections of instructional programming data. These datasets often comprise code submissions, 

error logs, execution time spans, and relevant information such as student evaluations or grades. 

Data preparation is an essential phase to guarantee high-quality and noise-free inputs for future 

analysis. This involves addressing missing or incomplete records, standardising code formats in 

order to eliminate syntactic diversity, and executing tokenisation for consistent representation of 

the programming language. Normalisation methods are utilised on numerical data to ensure 

consistency. Furthermore, outlier identification methods are utilised to eliminate incorrect data 

points, and categorical variables are encoded for numerical analysis. Data is partitioned into 

training, validation, and testing subsets to guarantee model generalisability. 

 

• Normalization (Min-Max Scaling): 

For a given image X (1): 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
                                                            (1) 

• Tokenization (Code Parsing) (2): 

𝑇𝑜𝑘𝑒𝑛𝑠 = 𝐿𝑒𝑥𝑒𝑟(𝐶)                                                                  (2) 

Where IN (2), 𝐶 represents the raw code, and Lexer denotes a lexical analyser. 

• Categorical Encoding (One-Hot Encoding) (3): 

O(i, j) =  {
1 if j = C(i)
0 otherwise

                                                        (3) 

• Outlier Detection (Z-Score) (4): 

𝑍 =
𝑋 − 𝜇

𝜎
                                                                                  (4) 

Where in (4), μ denotes the mean and σ represents the standard deviation. 

 

B. Feature Engineering: 

Feature selection and feature extraction concentrate on selecting the most important features within 

the dataset to improve model performance and minimise computational complexity. Feature 

selection is performed by statistical tests and machine learning algorithms to evaluate the 

importance of raw characteristics. Feature extraction generates new features from raw data by 
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mathematical manipulations, including embeddings for textual data and polynomial expansions 

for numerical characteristics. Principal Component Analysis (PCA) and Term Frequency-Inverse 

Document Frequency (TF-IDF) are frequently utilised to lower dimensionality and identify 

significant patterns. The final feature set is selected based on significance ratings derived from 

mutual information or feature importance scores from models such as Random Forest as shown in 

Table 1. 

 

• Mutual Information for Feature Selection (5): 

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑃(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑃(𝑥, 𝑦)

𝑃(𝑥)𝑃(𝑦)
)

𝑦∈𝑌𝑥∈𝑋

                              (5) 

• TF-IDF for Feature Extraction (6): 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑) ⋅ 𝑙𝑜𝑔 (
𝑁

𝐷𝐹(𝑡)
)                               (6) 

Where in (6), 𝑇𝐹(𝑡, 𝑑) represents term frequency, N is the total number of documents, and 𝐷𝐹(𝑡) 

signifies document frequency. 

• PCA for Dimensionality Reduction (7): 

𝑍 = 𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑊                                                                               (7) 

From (7), Z is the reduced 𝑛 × 𝑘 matrix that represents the dataset in k-dimensional space. 

 

Table.1 Feature Extraction Table. 

Raw Feature Derived Feature Importance Score 

Code Length Normalized Code Length 0.85 

Error Frequency Error Type Frequency 0.78 

Compilation Time Logarithm of Compilation Time 0.72 

Keyword Frequency TF-IDF Keyword Weighting 0.65 

Student Feedback Sentiment Score 0.59 

 

C. Design and Training of Model: 

1. Code Evaluation Techniques: 

Code evaluation entails the analysis of programming contributions to determine their accuracy, 

performance, and compliance with best practices. This procedure often encompasses test case 

execution, complexity assessment, and structural verification. Code is executed within a regulated 

sandbox environment to guarantee security and repeatability. Test case execution entails 

comparing the program's output with already established expected outputs and assigning a score 

depending on precision. Complexity analysis evaluates time and space efficiency using asymptotic 
notation. Structural validation guarantees compliance with coding rules by employing methods 

like abstract syntax tree (AST) analysis to identify abnormalities. 

 

• Test Case Accuracy (Output Match Percentage): 

𝐴 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑠𝑠𝑒𝑑 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡 𝐶𝑎𝑠𝑒𝑠
× 100                       (8) 

•  Time Complexity (Big-O Notation) (9): 

𝑇(𝑛) = 𝑂(𝑓(𝑛))                                                                          (9) 

Where in (9), 𝑓(𝑛) is the algorithm's growth rate. 

• Structural Validation Using AST (10): 

𝑆𝑐𝑜𝑟𝑒𝐴𝑆𝑇 =
𝑀𝑎𝑡𝑐ℎ𝑒𝑑 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠
× 100                               (10) 

2. Feedback Generation Mechanism: 

The feedback generating technique emphasises delivering important, helpful insights to students 
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derived from the examination of their code. This entails recognising mistakes, proposing 

enhancements, and presenting instances of accurate solutions. Feedback is produced by rule-based 

systems or machine learning models designed to identify particular coding patterns and anti-

patterns. Sentiment analysis and customised language models are frequently utilised to guarantee 

that feedback is both helpful and comprehensible. 

 

• Feedback Quality Score (11): 

𝑄 =
𝐻𝑒𝑙𝑝𝑓𝑢𝑙 𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠
× 100                                         (11) 

 

3. Supervised Learning for Grading: 

Supervised learning models are developed to automatically evaluate programming assignments by 

examining labelled data that includes code submissions and their corresponding grades. Attributes 

including code accuracy, complexity, execution duration, and compliance with style rules are 

retrieved and utilised as input. Present algorithms encompass support vector machines (SVM), 

random forests, and gradient-boosted decision trees. The model acquires a mapping function from 

input characteristics to output grades. 

 

• Prediction Function in SVM (12): 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥)

𝑛

𝑖=1

+ 𝑏)                                     (12) 

Where in (12), 𝐾(𝑥𝑖 , 𝑥) denotes the kernel function, and 𝛼𝑖𝑦𝑖 represent parameters acquired during 

the training process. 

• Loss Function for Gradient Boosting (13): 

𝐿(𝑦, 𝑦̂) =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

                                                        (13) 

 

III.RESULT AND DISCUSSION 

1. Evaluation Results: 

The assessment of the proposed automated grading system was performed on a programming 

dataset including 5,000 samples, with 80% allocated for training and 20% for testing. The system 

attained superior performance across assessment measures as shown in Table 2. The training phase 

demonstrated an accuracy of 98.5%, signifying excellent differentiation of correct and erroneous 

responses. Precision and recall were determined at 97.8% and 98.3%, respectively, indicating 

minimal false positives and false negatives in feedback extraction. The F1-score of 98.1% 

indicated an equitable compromise between accuracy and recall. Furthermore, the RMSE for 

grading prediction was 0.12, indicating a high level of accuracy in point allocation relative to 

manual grading. 

 

Table 2. Training Results of Training Dataset 

Metric Value 

Accuracy 98.5% 

Precision 97.8% 

Recall 98.3% 

F1-Score 98.1% 

RMSE (Grading) 0.12 
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2. Comparative Analysis with Traditional Grading Approaches: 

A comparative study was performed by evaluating the suggested system against conventional 

grading methods utilising baseline models like logistic regression, support vector machines 

(SVM), and decision trees. Although conventional models attained reasonable accuracy, the 

suggested technique surpassed them considerably as shown in Table 3, Figure 2, Figure 3. The use 

of machine learning methodologies, including gradient-boosted decision trees and NLP-driven 

feedback systems, resulted in enhanced precision and recall in grading and feedback processes. 

The suggested method demonstrated superior flexibility in assessing various programming 

techniques and consistently delivered detailed feedback, beyond the constraints of human or semi-

automated grading systems. 

 

Table 3. Comparative Analysis of Key Performance Metrics 

Model Accuracy Precision Recall F1-Score RMSE 

Logistic Regression 85.2% 84.5% 84.8% 84.6% 0.45 

SVM 89.3% 87.9% 88.6% 88.2% 0.32 

Decision Trees 86.7% 85.5% 86.0% 85.7% 0.41 

Proposed System 98.5% 97.8% 98.3% 98.1% 0.12 

 

 
Figure 2. F1 Score Comparison.  
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Figure 3. Comparison of Accuracy Across Models.  

 

3. Scalability and Efficiency: 

The suggested system is engineered to manage extensive datasets and simultaneous submissions, 

rendering it very scalable. The system employs distributed computing frameworks, allowing it to 

process more than 10,000 entries per hour with minimal interruption. The grading pipeline is 

enhanced by asynchronous task scheduling and parallel processing, guaranteeing effective 

resource utilisation. Benchmarks shown in Figure 4, indicate that the system attains grading speeds 

that are 40% quicker than conventional manual or semi-automated methods, maintaining stable 

accuracy and performance as workloads increase. 

 
Figure 4. Scalability and Efficiency.  
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4. Impact on Students and Faculty: 

The suggested approach significantly improves the learning experience for students by delivering 

immediate, comprehensive, and tailored feedback on their programming tasks as shown in Figure 

5. This enables students to rapidly recognise and rectify their errors, hence enhancing their 

comprehension of programming topics. The method reduces the manual grading workload for 

faculty, allowing them to concentrate on enhancing the curriculum and providing individualised 

student assistance. The approach guarantees equitable and consistent grading, enhancing 

confidence and transparency between students and instructors, hence increasing overall 

satisfaction and educational results. 

 

 
Figure 5. Impact on Students and Faculty. 

 

IV.CONCLUSION 

This study has created a sophisticated automated grading and feedback system for programming 

in higher education utilising machine learning. Significant findings indicate that the suggested 

approach surpasses conventional techniques in accuracy, precision, and quality of feedback. 

Contributions to the discipline encompass the use of machine learning for automated assessment 

and natural language processing for individualised feedback. Practical applications encompass 

accelerated grading, enhanced student comprehension, and lowered instructor effort. The system 

has exceptional scalability; however, enhancements are required in multi-language programming 

support and flexibility. Future studies should investigate improving grading reliability for complex 

coding patterns and boosting dataset variety for wider application. 
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