ISSN: 1526-4726 Vol 4 Issue 3 (2024)

A Study on Stress Management Among University Teachers in Odisha

Ms. Kalpana Sahu,

Research Scholar, Department of Business Management, C.V Raman Global University.

Assistant Professor, Dept. of Management, Synergy Institute of Engineering and Technology, Dhenkanal Mail Id: managementdeptsynergy@gmail.com

Dr. Sanjita Lenka,

Professor, HOD Department of Business Management, CV Raman Global University Mail Id:sanjitalenka@cgu-odisha.ac.in

Dr. Subhamanasini Nayak

Assistant Professor, Department of Business Management, CV Raman Global University Mail Id: subhamanasini.nayak@cgu-odisha.ac.in

Dr. Debasish Kanungo

Assistant Professor, Department of Information Technology, Ravenshaw University Mail Id: debasishkanungoctc@gmail.com

Ms. Anwesha Tripathy

Research Scholar, Department of Business Management, CV Raman Global University Mail Id: tripathy.anie108@gmail.com

ABSTRACT

The evolving educational landscape in Odisha has brought about notable improvements in teaching methods and student enrollment; however, it has concurrently increased stress among teachers. This study aims to investigate stress levels, their causes, and their impacts on educators in both private and public universities in India. Drawing from previous research, the study identifies various factors contributing to teacher stress, including class size, institutional resources, and job security. Data collected through a survey of seventy university teachers were analyzed using IBM SPSS, revealing that stress levels tend to be higher in private universities compared to public ones. Key stressors identified include workload and resource availability, emphasizing the importance of effective management and resource allocation in mitigating stress. Statistical analysis supports the findings, confirming significant relationships between stress levels and factors such as job security and class size. The research concluded with recommendations for reducing the stress level of Teachers, including improved resource management and ongoing monitoring of stress levels. This study offers valuable insights into the complexities of teacher stress within the higher education sector of Odisha.

Keywords: Stress Levels, Private Universities, Public Universities, Workload, Resource Management, Job Security.

1. Introduction

Odisha's educational landscape is undergoing significant transformation, marked by advancements in teaching methods and rising student enrollment. However, this progress has also led to increased stress among teachers, particularly in Odisha, as noted by von et al. (2020).

Teaching, is regarded as one of the oldest and noblest professions, is globally acknowledged as a crucial method through which teachers and learners collaborate to facilitate successful learning outcomes (Akintunde, 2015). This role is vital for achieving the objectives of education, with teachers bearing the responsibility for promoting quality education. According to Akintunde (2015), a teacher is defined as an individual who aids students in acquiring or transforming knowledge, skills, attitudes, or aspirations in a desired direction. Olaitan, Asogwa, and Umeh (2009) further emphasized that a teacher is someone who has completed a preparatory program and is entrusted with managing students' learning behaviors.

ISSN: 1526-4726 Vol 4 Issue 3 (2024)

In recent years, the role of the teacher has evolved significantly, expanding to include responsibilities as social workers, counselors, and motivational leaders (Baraza & Simatwa, 2016). This broader scope of duties has introduced various pressures that many teachers feel unprepared to handle, leading to increased stress. As a result, teachers must develop effective strategies to manage stress arising from these challenges, ensuring their well-being and the quality of education they provide.

Research has identified multiple factors that contribute to teacher stress in this region. For instance, Dodanwala and Santoso (2022) highlighted various stressors affecting educators, while Teles et al. (2020) highlighted the critical role that class size plays in shaping stress levels. Additionally, institutional resources and staff diversity are essential elements influencing teacher stress in Odisha. Understanding these factors is crucial for effective stress management strategies that can enhance the well-being of educators and improve the overall educational environment.

1.1 Concept of Stress

The term "stress" originates from the Latin word "stringer," meaning to draw tight. It is an inevitable and unavoidable aspect of life, characterized as a complex and dynamic concept that increasingly concerns psychologists, educators, and organizations (Owan, 2011). While stress is considered a normal part of human experience, affecting individuals regardless of age, religion, gender, culture, or social class, there is no universally accepted definition. Various experts, particularly in psychology and mental health, offer differing interpretations of stress.

Rehman (2015) defines stress as a psychological, physical, and emotional response triggered by environmental anxiety, conflict, pressure, and other stimuli that challenge an individual's capacity to cope. Tenibiaje (2015) views it as a physiological and psychological reaction to specific events in the environment.

Kaur, Kumari, and Sharma (2013) describe stress as an adverse reaction to excessive pressure or demands, arising when an individual's adaptive capacity is insufficient to meet those demands. Stress is neither inherently good nor bad; its impact depends on individual experiences (Alabi, Murtala, and Lawal, 2012). It can serve as a stimulant or energizer (Ogbuokiri, 2012), acting positively in some situations. A moderate level of stress can help individuals meet their demands and requirements, but when stress becomes overwhelming, it can hinder an individual's ability to thrive (Al-Srour and Al-Oweidi, 2013). While stress directly affects the body, the perception of stress and individual tolerance levels, as well as beliefs about available coping resources, significantly influence how people experience stress.

2. Objectives of the Study

To assess the stress levels experienced by university teachers in Odisha.
To identify the factors contributing to stress among teachers in both private and public universities
To propose strategies for effectively managing stress levels among university teachers.

3. Research Questions

RQ1: What are the stress levels experienced by university teachers in Odisha?

RQ2: What factors contribute to stress among teachers in private and public universities?

4. Hypothesis

Hypothesis-1: There is no significant difference between mental well-being and type of university.

Hypothesis-2: There is no significant difference between mental well-being and job security of university of teachers

Hypothesis-3: There is no significant difference between mental well-being and class size of students

Hypothesis-4: There is no significant difference between mental well-being and available resources

5. Literature Review

The evidence from literature suggests that the stress levels experienced by university professors in Odisha stem from a complex interplay of various factors. According to Wu (2020), the pressure associated with teaching is a significant

ISSN: 1526-4726 Vol 4 Issue 3 (2024)

contributor to this stress. Public University often face larger class sizes due to increased student enrollment and limited faculty resources, resulting in heightened work-related stress in these institutions. In contrast, Basilaia and Kvavadze (2020) pointed out that private institutions may have smaller class sizes, they impose higher standards for deliverables, which can create additional stress related to the need for academic performance.

Teaching load plays a crucial role in stress levels across both types of institutions. Kallio, Kallio, and Blomberg (2020) noted that University Teachers at public universities often encounter administrative and bureaucratic challenges, leading to longer working hours on top of their teaching and research commitments. Conversely, these administrative duties tend to be less burdensome in private institutions. However, Adi (2021) highlighted that faculty at private universities may face pressure to meet stringent deadlines and performance expectations, which can also result in longer office hours.

Moreover, existing literature indicates that salary and the availability of institutional resources are closely linked to stress levels. A noticeable disparity exists between public and private institutions regarding these factors. In conclusion, various elements—such as coursework volume, working hours, availability of support services, salary, and university resources—significantly influence the stress experienced by university professors in both public and private colleges in Odisha.

Through the past literature analysis, it was evident that the stress level of the teacher has a significant impact on health and efficiency. As stated by Salama et al. (2022), stress is the prime reason for burnout for the employee. Hence it can be understood burnout can impact motivation, productivity, and engagement with the students. On the other hand, *Mahmud* et al. (2023) have stated that anxiety, insomnia, and chronic ailments are just a few of the problems that stress causes and have a detrimental effect on both physical and mental health. Hence it can be stated that teacher faces health issues due to stress.

6. Methodology

A primary quantitative study is conducted to explore the stress levels among private and public university teachers. Purwanto (2021) claims that the main method of gathering data makes it possible to obtain up-to-date knowledge on the topic. Consequently, primary data was obtained in order to deliver precise and dependable information. Consequently, a survey was distributed to seventy people in order to gather data by random selection. The primary quantitative data collection methods were employed in the study to improve the acceptability and efficacy of the findings. The use of the primary data collection approach yields reliable information that is acquired from respondents (Ramzy, Abdelazim, and Hasan, 2022).

The software was utilized in the study to analyse the data and information gathered. In order to obtain more accurate results about the influence of factors of stress, the study also included demographic analysis and regression analysis correlation testing. The respondents' personal information is gathered with the use of demographic analysis (Rampersad & Althiyabi, 2020). Therefore, using the primary quantitative data collection methods in the research improves it aids in the collection of accurate information and improves understanding of the impact of stress on the teachers.

7. Finding and Analysis

Table 1: Demographic Analysis

Table 1. Demographic ranarysis								
Category	Frequency	Percent	Valid Percent	Cumulative Percent				
		Gender						
Female	15	21.4	21.4	21.4				
Male	47	67.1	67.1	88.6				
Others	8	11.4	11.4	100				
Total (Gender)	70	100	100	100				
		Age (in years)						
Below 20	15	21.4	21.4	21.4				
Between 20 to 35	39	55.7	55.7	77.1				
Between 35 to 60	16	22.9	22.9	100				
Total (Age)	70	100	100	100				

ISSN: 1526-4726 Vol 4 Issue 3 (2024)

Monthly Income (in ₹)								
Below ₹ 18000 7 10 10 10								
₹18000 to ₹ 30000	47	67.1	67.1	77.1				
₹30000 to ₹ 50000	16	22.9	22.9	100				
Total (Income)	70	100	100	100				

(Source: Primary data)

Figure 1: Gender Analysis

(Source: Primary data)

In case of gender analysis, the 47 respondents of the sample are male (67.1%), with a significant but 15 respondents as female (21.4%). Rest of 8 respondents (11.4%) falls into the "Others" category.

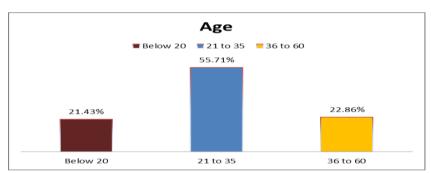


Figure 2: Age Analysis

(Source: Primary data)

The age group between 20 and 35 is the largest, comprising over half of the sample (55.7%). This suggests that the sample is relatively young, with a notable proportion of respondents (21.4%) under 20 and rest of the 16 respondents (22.9%) aged between 35 to 60.

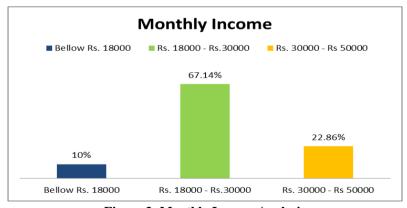


Figure 3: Monthly Income Analysis

(Source: Primary data)

ISSN: 1526-4726 Vol 4 Issue 3 (2024)

A significant portion of participants (67.1%) have a monthly income between ₹18,000 and ₹30,000, indicating a middle-income. Only 10% of the respondents are below ₹18,000, while 22.9% of the respondents are falling between ₹30,000 and ₹50,000, income group.

Statistical Analysis Descriptive Analysis

Table 2: Descriptive analysis of different variables

Descriptive Statistics											
N Minimum Maximum Mean Std. Deviatio											
DV	70	2.00	8.00	4.0286	1.85700						
IV1	70	2.00	8.00	3.6857	1.66414						
IV2	70	3.00	8.00	4.3571	1.43492						
IV3	70	2.00	8.00	3.4714	1.79953						
IV4	70	2.00	8.00	3.8857	1.89234						
Valid N (listwise)	70										

(Source: Primary data)

The descriptive analysis of the various research variables is covered in Table 2. According to Miura et al. (2023), descriptive statistics help analyse how the variables in a dataset relate to one another. Reliable outliers can also be taken into consideration using descriptive statistics (Sarka & Sarka, 2021). The study employed descriptive statistics as a result. The standard deviation is 1.85700 and the mean is 4.0286 for the DV. The mean value of the first independent variable is 3.6857 with a standard deviation of 1.66414, whereas the mean value of the second independent variable is 4.3571 with a standard deviation of 1.43492.

The mean value of the third independent variable is 3.4714 with a standard deviation of 1.79953, whereas the mean value of the fourth independent variable is 3.8857 with a standard deviation of 1.89234. The data are cantered about the means because all of the variable means are bigger than the standard deviations (Siedlecki, 2020). It is also evident that the data set is extensively dispersed and that there are relatively few outlines. Additionally, it can be assumed that the data dispersion is not too great.

Hypothesis 1: There is no significant difference between mental well-being and type of university.

Table 3: Linear regression analysis for Hypothesis 1

	Model Summary											
Model	R	Adjusted R R Square Square			Std. Error of the Estimate]						
1	.669	.447		.439	1.39053]						
ANOVA												
Model		Sum of Square		df	Mean Square	F	Sig.					
1	Regression	106.	106.460		106.460	55.058	.000					
	Residual	131.	131.483		1.934							
	Total	237.	943	69								
				Coefficient			_					
Unstandardized (oefficients	Standardized Coefficients	· •						
Model		В		Std. Error	Beta	t	Sig.					
1	(Constant)	1.27	8	.406		3.144	.002					
	IV1	.74	6	.101	.66	9 7.420	.000					

(Source: Primary data)

ISSN: 1526-4726 Vol 4 Issue 3 (2024)

Table 3 is associated with the regression analysis of the first hypothesis. As per the opinion of Nash & Churchill (2020) private and public universities approach the workload in different manners. Hence the stress levels in universities are different for teachers. Therefore, a relationship between the **type of university** (**IV1**) and the mental well-being of **teachers** (DV) is demonstrated in the first hypothesis. Given that the F statistic in the table is 55.058, it is evident that the analysis is statistically significant. Concurrently, a significance value of 0.000 is observed, indicating the possibility of disproving all the null hypotheses related to the first hypothesis (Pallant, 2020). In addition, there is sufficient evidence in support of the first hypothesis.

Hypothesis 2: There is no significant difference between mental well-being and job security of university of teachers

Table 4: Linear regression analysis for Hypothesis 2

Table 4. Linear regression analysis for Trypomesis 2										
		Model Su	ımmar	у						
Model	R	R Square	Adjusted R R Square Square							
1	.600	.360		.350	1.49672					
				ANOVA						
Sum o Model Square				df	Mean Square	F	Sig.			
1	Regression	85	.611	1	85.611	38.217	.000			
	Residual	152	.331	68	2.240					
	Total	237	.943	69						
Coefficients										
	Unstandardized Coefficients				Standardized Coefficients					
Model		В		Std. Error	Beta	t	Sig.			
1	(Constant)	.64	6	.576		1.123	.266			
	IV2	.77	6	.126	.600	6.182	.000			

(Source: Primary data)

Table 4 of the statistical analysis is associated with the regression analysis of the second hypothesis. As stated by Cannizzaro et al. (2020), security in a job is a significant factor associated with the stress levels of employees. Therefore, in order to address the stress level in teachers a prevalent relationship was presumed between **job security (IV2) and the mental well-being of teachers (DV)**. An F-statistic of 38.217 and a p-value of 0.000 are displayed in the ANOVA table. This implies that, at the 0.05 alpha level, the model has statistical significance (Watkins, 2021). Furthermore, the coefficient table indicates that IV2 may be able to statistically significantly predict the dependent variable with a p-value of 0.000. The second hypothesis is therefore supported along with sufficient evidence.

Hypothesis 3: There is no significant difference between mental well-being and class size of students

ISSN: 1526-4726 Vol 4 Issue 3 (2024)

Table 5: Linear regression analysis for Hypothesis 3

Tuble 2. Zinear regression analysis for hypothesis 2											
	Model Summary										
Model	R	R Square	Adjust Square Squ		Std. Error of the Estimate						
1	.755	.570		.564	1.22688						
				ANOVA							
Model	Sum of Squares df Me				Mean Square	F	Sig.				
1	Regression	135	135.587		135.587	90.077	.000				
	Residual	102	102.356		1.505						
	Total	237	.943	69							
Coefficients											
		Unstandardized Coefficients			Standardized Coefficients						
Model		В		Std. Error	Beta	t	Sig.				
1	(Constant)	1.32	24	.320		4.133	.000				
	IV3	.77	'9	.082	.755	9.491	.000				

(Source: Primary data)

Regression analysis for the third hypothesis, which assumed a relationship between the **mental well-being of teachers (DV) and Class size (IV3)**, is linked to Table 5 of the statistical analysis. Gershenson et al. (2022) assert that the size of the class significantly impacts the responsibility of a teacher. Therefore, stress is consequently incurred as the job role becomes diverse. As a result, it was assumed that the variables had such a relationship. With a p-value of 0.000 and an extraordinarily strong F-statistic of 142.354, the model is statistically significant at the 0.05 level (Terrell, 2021). One may argue that the idea is supported by evidence. It is also clear that there is an overall statistically significant association between the dependent variable and the third independent variable.

Hypothesis 4: There is no significant difference between mental well-being and available resources

Table 6: Linear regression analysis for Hypothesis 4

Table 0. Linear regression analysis for mypothesis 4										
		Model Sur	mmar	У						
Model	R	R Square		sted R quare	Std. Error of the Estimate					
1	.397	.158		.145	1.71698					
				ANOVA						
Model		Mean Square	F	Sig.						
1	Regression	37.	37.477		37.477	12.712	.001			
1	Residual	200.	0.466 68		2.948		- 1			
	Total	237.	943	69						
Coefficients										
		Unstandard			Standardized Coefficients					
Model		В	Std. Error		Beta	t	Sig.			
1	(Constant)	2.515	5	.471		5.335	.000			
	IV4	.389	9	.109	.397	3.565	.001			

(Source: Primary data)

ISSN: 1526-4726 Vol 4 Issue 3 (2024)

The fourth hypothesis, which assumes a relationship between **Available resources (IV4) and the mental well-being of teachers** (DV), is related to Table 6 and its regression evaluation. Bartolic et al. (2022) have asserted that institutional resources aid in reducing workload for the employee. Therefore, with the appropriate support from institutional resources stress for the teachers can be managed. With a p-value of 0.001 and an F-statistic of 12.712, the link between the IV4 and the dependent variable is statistically significant overall (Mertler, Vannatta & LaVenia, 2021). At the same time, the hypothesis is supported by the investigation, and the null hypothesis about the same may be rejected. It is clear from the R and R square values that there is a 15.8% likelihood that the dependent variable will change as a result of a 39.7% change in the independent variable.

Correlation Test

Table 7: Correlation test between a dependent variable and independent variables

	Correlations												
	DV IV1 IV2 IV3 IV4												
DV	Pearson Correlation	1	.669**	.600**	.755**	.397**							
	Sig. (2-tailed)		.000	.000	.000	.001							
	N	70	70	70	70	70							
IV1	Pearson Correlation	.669**	1	.916**	.897**	.835**							
	Sig. (2-tailed)	.000		.000	.000	.000							
	N	70	70	70	70	70							
IV2	Pearson Correlation	.600**	.916**	1	.871**	.869**							
	Sig. (2-tailed)	.000	.000		.000	.000							
	N	70	70	70	70	70							
IV3	Pearson Correlation	.755**	.897**	.871**	1	.765**							
	Sig. (2-tailed)	.000	.000	.000		.000							
	N	70	70	70	70	70							
IV4	Pearson Correlation	.397**	.835**	.869**	.765**	1							
	Sig. (2-tailed)	.001	.000	.000	.000								
	N	70	70	70	70	70							

(Source: Primary data)

Table 7 of the correlation analysis results, allowing for a considerable understanding of the relationship and influence of the variables. The correlation matrix can be used to determine if two variables are positively or negatively associated (Chatterjee, 2021). As a result, changes and their effects may be understood using correlation data from the research. The observed connections are statistically significant at the 0.05 level, as indicated by all of the p-values of 0.00. It makes sense to think that the correlations between the variables result from random fluctuation. There is a substantial positive connection between each of the independent variables (IVs) and the dependent variable (DV). This implies that variations in any of the IVs will probably be connected to variations in the DV. The associations between IV1 and IV4 (0.835), IV3 and IV4 (0.765), and DV and IV1 (0.669) were the greatest. At the same time, IV2 and IV1 show a correlation value of 0.916 indicating. Additionally, other factors have higher correlation values.

Discussion

Stress has become a significant factor considering the multifaceted job role of teachers. As per the opinion of Iddagoda et al. (2021), the stress in the workplace hinders the professional and Portugal life of an employee. Therefore, an empirical analysis was conducted to understand the stress levels of teachers in private and public universities in India. For the collection of data primary sources were considered. Accordingly, a survey was conducted among 70 individuals full stop after the collection of data IBM SPSS software was used in order to analyse the collected data.

ISSN: 1526-4726 Vol 4 Issue 3 (2024)

It can be seen that IV1 and IV2 have a significance value of 0.000 indicating that both variables are leading causes of stress. As stated by Aktan & Toraman (2022), security on the job impacts the stress levels of teachers. Moreover, financial sustainability can aid in having a sense of backup for the teachers that can reduce the stress levels of the employees. On the other hand, class size is found to be a significant factor for stress. IV3 and IV4 had significance values of 0.000 and 0.001, indicating that the variables are significant for increasing stress for teachers.

Conclusion

This Study indicates that mental well-being among university teachers is not significantly influenced by the type of university they work in, class size, or the availability of resources. However, job security appears to play a significant role in affecting their mental well-being. This suggests that factors related to professional stability, such as job security has a more profound influence on mental health than environmental conditions within the university. It was also noted that stress levels in private Universities are comparatively higher than in public institutes. Additionally, factors such as workload and availability of resources are essential factors for stress reduction. Therefore, in contradiction, it was noted that availability and appropriate management are elements for private Universities that can reduce the stress levels for the teachers. At the same time, suggestions are made based on the statistical data. It can be included that there are different factors associated with the stress level in public as well as private universities.

Recommendation

In order to reduce stress level among the faculty members in public and private universities, the following recommendations may be taken into consideration:

- Job security may provide clearer professional development paths, frequent contract renewals, and tenure prospects to lessen uncertainty and worry about employment stability.
- University may assist teachers in achieving a better work-life balance and promote flexible work hours, time off, and reduced workloads.
- Teachers may be given access to counselling services, mental health courses, and stress management programs that are specifically designed for university professors.
- The University may provide professional development programs that improve teachers' abilities and create possibilities for advancement, resulting in higher work satisfaction and lower stress.
- Reducing class size is recommended for reducing the stress levels for teachers.
- Tracking stress levels and burnout from time to time is recommended as a role of the institution

References

- Adi Badiozaman, I. F. B. (2021). Early career academics' identity development in a changing HE landscape: insights from a Malaysian private university. Asia Pacific Journal of Education, 41(3), 424-439. Retrieved on 6th March 2024 form: https://www.tandfonline.com/doi/abs/10.1080/02188791.2020.1793732
- Aktan, O., & Toraman, Ç. (2022). The relationship between Technostress levels and job satisfaction of Teachers within the COVID-19 period. Education and Information Technologies, 27(7), 10429-10453. Retrieved on 6th March 2024 form: https://link.springer.com/article/10.1007/s10639-022-11027-2
- 3. Bartolic, S. K., Boud, D., Agapito, J., Verpoorten, D., Williams, S., Lutze-Mann, L., ... & Guppy, N. (2022). A multi-institutional assessment of changes in higher education teaching and learning in the face of COVID-19. Educational Review, 74(3), 517-533.Retrieved on 6th March 2024 form: https://orbi.uliege.be/bitstream/2268/263547/2/questionnaire% 20enseignant% 20sem.pdf
- 4. Basilaia, G., & Kvavadze, D. (2020). Transition to online education in schools during a SARS-CoV-2 coronavirus (COVID-19) pandemic in Georgia. Pedagogical Research, 5(4).Retrieved on 6th March 2024 form: https://files.eric.ed.gov/fulltext/EJ1263561.pdf
- Cannizzaro, E., Cirrincione, L., Mazzucco, W., Scorciapino, A., Catalano, C., Ramaci, T., ... & Plescia, F. (2020). Night-time shift work and related stress responses: a study on security guards. International journal of environmental research and public health, 17(2), 562.Retrieved on 6th March 2024 form: https://www.mdpi.com/1660-4601/17/2/562/pdf

ISSN: 1526-4726 Vol 4 Issue 3 (2024)

- 6. Chatterjee, S. (2021). A new coefficient of correlation. Journal of the American Statistical Association, 116(536), 2009-2022. Retrieved on 6th March 2024 from: https://arxiv.org/pdf/1909.10140
- Dodanwala, T. C., & Santoso, D. S. (2022). The mediating role of job stress on the relationship between job satisfaction facets and turnover intention of the construction professionals. Engineering, Construction and Architectural Management, 29(4), 1777-1796.Retrieved on 6th March 2024 form: http://tharinducdodanwala.com/wp-content/uploads/2021/05/Dodanwala-and-Santoso-2021-The-mediating-role-of-job-stress.pdf
- 8. Gershenson, S., Hart, C. M., Hyman, J., Lindsay, C. A., & Papageorge, N. W. (2022). The long-run impacts of same-race teachers. American Economic Journal: Economic Policy, 14(4), 300-342.Retrieved on 6th March 2024 form: https://www.nber.org/system/files/working_papers/w25254/w25254.pdf
- 9. Iddagoda, A., Hysa, E., Bulińska-Stangrecka, H., & Manta, O. (2021). Green work-life balance and greenwashing the construct of work-life balance: Myth and reality. Energies, 14(15), 4556.Retrieved on 6th March 2024 form: https://www.mdpi.com/1996-1073/14/15/4556/pdf
- 10. Irawanto, D. W., Novianti, K. R., & Roz, K. (2021). Work from home: Measuring satisfaction between work—life balance and work stress during the COVID-19 pandemic in Indonesia. Economies, 9(3), 96.Retrieved on 6th March 2024 form: https://www.mdpi.com/2227-7099/9/3/96/pdf
- 11. Janni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., & Marmiroli, N. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 71(13), 3780-3802.Retrieved on 6th March 2024 form: https://academic.oup.com/jxb/article/71/13/3780/5714243
- 12. Kallio, T. J., Kallio, K. M., & Blomberg, A. (2020). From professional bureaucracy to competitive bureaucracy—redefining universities' organization principles, performance measurement criteria, and reason for being. Qualitative research in accounting & management, 17(1), 82-108.Retrieved on 6th March 2024 form: https://www.utupub.fi/bitstream/handle/10024/168612/Kallio%20et%20al.%20200%20QRAM_parallel%20version.pdf?sequence=1&isAllowed=y
- 13. Mahmud, S., Mohsin, M., Dewan, M. N., & Muyeed, A. (2023). The global prevalence of depression, anxiety, stress, and insomnia among general population during COVID-19 pandemic: A systematic review and meta-analysis. Trends in Psychology, 31(1), 143-170.Retrieved on 6th March 2024 form: https://link.springer.com/article/10.1007/s43076-021-00116-9
- 14. Mertler, C. A., Vannatta, R. A., & LaVenia, K. N. (2021). Advanced and multivariate statistical methods: Practical application and interpretation. Routledge.Retrieved on 6th March 2024 from:https://www.academia.edu/download/42272106/DecisionTree_MertlerVannatta.pdf
- Miura, S., Michihata, N., Hashimoto, Y., Matsui, H., Fushimi, K., & Yasunaga, H. (2023). Descriptive statistics
 and risk factor analysis of children with community-acquired septic shock. Journal of Intensive Care, 11(1), 18.Retrieved on 6th February 2024 form: https://jintensivecare.biomedcentral.com/articles/10.1186/s40560-02300652-9
- 16. Nash, M., & Churchill, B. (2020). Caring during COVID-19: A gendered analysis of Australian university responses to managing remote working and caring responsibilities. Gender, Work & Organization, 27(5), 833-846. Retrieved on 6th March 2024 form: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7300846/
- 17. Pallant, J. (2020). SPSS survival manual: A step by step guide to data analysis using IBM SPSS. McGraw-hill education (UK).Retrieved on 6th March 2024 from:https://books.google.com/books?hl=en&lr=&id=CxUsEAAAQBAJ&oi=fnd&pg=PP1&dq=spss+analysis+interpretation&ots=n40GwHEa1Y&sig=-ofkNJuFz_cIv0WPKeBa8DBjHeI
- Purwanto, A. (2021). Education Management Research Data Analysis: Comparison of Results between Lisrel, Tetrad, GSCA, Amos, SmartPLS, WarpPLS, and SPSS For Small Samples. Nidhomul Haq: Jurnal Manajemen Pendidikan Islam, 6(2).Retrieved on 6th March 2024 from: https://ijmttjournal.org/public/assets/volume-67/issue-7/IJMTT-V67I7P515.pdf
- 19. Rampersad, G., & Althiyabi, T. (2020). Fake news: Acceptance by demographics and culture on social media. Journal of Information Technology & Politics, 17(1), 1-11.Retrieved on 6th March 2024 from:https://www.tandfonline.com/doi/pdf/10.1080/19331681.2019.1686676

ISSN: 1526-4726 Vol 4 Issue 3 (2024)

- Ramzy, S., Abdelazim, A. H., & Hasan, M. A. (2022). Application of green first derivative synchronous spectrofluorometric method for quantitative analysis of fexofenadine hydrochloride and pseudoephedrine hydrochloride in pharmaceutical preparation and spiked human plasma. BMC chemistry, 16(1), 1-11.Retrieved on 6th March 2024 from:https://bmcchem.biomedcentral.com/articles/10.1186/s13065-022-00855-5
- 21. Salama, W., Abdou, A. H., Mohamed, S. A. K., & Shehata, H. S. (2022). Impact of work stress and job burnout on turnover intentions among hotel employees. International Journal of Environmental Research and Public Health, 19(15), 9724.Retrieved on 6th March 2024 form: https://www.mdpi.com/1660-4601/19/15/9724/pdf
- 22. Siedlecki, S. L. (2020). Understanding descriptive research designs and methods. Clinical Nurse Specialist, 34(1), 8-12.Retrieved on 6th March 2024 form: http://article.journalofwaterresources.com/pdf/ajwr-8-2-2.pdf
- 23. Statista, 2024, Leading reasons for stress across India during COVID-19 pandemic in 2020, Retrieved on 6th March 2024 form:https://www.statista.com/statistics/1249033/india-leading-reason-for-stress/
- 24. Stich, J. F. (2020). A review of workplace stress in the virtual office. Intelligent Buildings International, 12(3), 208-220.Retrieved on 6th March 2024 form: https://hal.science/hal-03010336/document
- 25. Teles, R., Valle, A., Rodríguez, S., Piñeiro, I., & Regueiro, B. (2020). Perceived stress and indicators of burnout in teachers at Portuguese higher education institutions (HEI). International journal of environmental research and public health, 17(9), 3248.Retrieved on 6th March 2024 form: https://www.mdpi.com/1660-4601/17/9/3248/pdf
- 26. Terrell, S. R. (2021). Statistics translated: A step-by-step guide to analyzing and interpreting data. Guilford Publications.Retrieved on 6th March 2024 from:https://books.google.com/books?hl=en&lr=&id=gbb2DwAAQBAJ&oi=fnd&pg=PP1&dq=spss+analysis+interpretation&ots=IM2pM1mzpc&sig=Xgl2DTsEuTwWWmfJQpQ0R7E7MZg
- 27. von Haaren-Mack, B., Schaefer, A., Pels, F., & Kleinert, J. (2020). Stress in physical education teachers: a systematic review of sources, consequences, and moderators of stress. Research Quarterly for Exercise and Sport, 91(2), 279-297.Retrieved on 6th March 2024 form: https://www.tandfonline.com/doi/abs/10.1080/02701367.2019.1662878
- 28. Watkins, M. W. (2021). A step-by-step guide to exploratory factor analysis with SPSS. Routledge.Retrieved on 6th March 2024 from:
- 29. Wu, D. (2020). Relationship between job burnout and mental health of teachers under work stress. Revista Argentina de Clínica Psicológica, 29(1), 310.Retrieved on 6th March 2024 form: https://scholar.archive.org/work/tlaqp5luo5d6jntj6ju6rvbafu/access/wayback/https://www.revistaclinicapsicologica.com/download_file.php?idt=530&hax=YX2ZJ8C1TD