

The Role of Artificial Intelligence in Enhancing Business Decision-Making: Challenges and Opportunities in Mumbai-Based Enterprises

Mr. Shashank Khedekar¹, Dr. Samadhan Bundhe²

¹Research Scholar, Sandip University, Nashik

²Assistant Professor, Sandip University, Nashik

ABSTRACT:

Artificial Intelligence (AI) has emerged as a transformative force across industries, revolutionizing the way organizations make business decisions. This research investigates the adoption, readiness, and challenges of integrating AI technologies within business enterprises in Mumbai. Drawing on quantitative analysis from 403 organizations, the study explores factors influencing AI integration, including infrastructure availability, leadership commitment, regulatory readiness, and openness to innovation. Findings reveal that while many organizations recognize AI's potential to enhance decision-making and operational efficiency, significant barriers persist particularly in integrating AI systems with legacy IT infrastructure and ensuring scalability of AI models. The study emphasizes that AI should be viewed not merely as a technological upgrade but as a strategic enabler for intelligent, data-driven decision-making. Recommendations include strengthening leadership commitment, investing in adaptable infrastructure, and fostering a culture of innovation to fully harness AI's potential in business decision-making.

KEYWORDS: Business Decision, Artificial Intelligence, Machine learning, etc.

INTRODUCTION:

The relationship between AI and business is one of transformation and collaboration. AI isn't designed to replace human intelligence in the business world, but rather to augment it. The quest to create intelligent machines has captivated humanity for centuries. Today, this quest finds its expression in the burgeoning field of Artificial Intelligence (AI). As the Oxford English Dictionary defines it, AI is the very act of developing computer systems that can perform tasks typically requiring human intelligence. These tasks are not limited to rote calculations but encompass a vast array of human capabilities like visual perception, speech recognition, decision-making, and even language translation. AI goes beyond mere mimicry of human behavior. The heart of AI lies in replicating a specific aspect of human intelligence. Intelligence, as psychologists describe it, is the multifaceted ability to learn from experience, adapt to new situations, understand and reason about abstract concepts, and ultimately leverage this knowledge to manipulate the environment in a meaningful way. AI aspires to instill machines with these very capabilities.

The rise of Artificial Intelligence (AI) has fundamentally transformed the landscape of modern business decision-making. AI is no longer an emerging trend but a core driver of strategic, data-based business transformation. The relationship between AI and business is one of collaboration rather than replacement of AI complements human intelligence by enhancing analytical precision, efficiency, and adaptability.

Business decisions relied heavily on managerial experience, intuition, and static data analytics. In an era characterized by dynamic market fluctuations, competitive globalization, and vast digital data generation, these traditional approaches are insufficient. AI offers a paradigm shift by enabling predictive insights, automated reasoning, and adaptive responses to real-time challenges. AI encompasses a range of technologies, including machine learning, deep learning, and natural language processing, each contributing to diverse business functions, marketing, finance, operations, and human resources. In cities like Mumbai, India's financial and commercial hub. AI adoption presents both immense opportunities and practical challenges. Businesses are increasingly exploring AI-driven tools to optimize operations, enhance customer engagement, and predict market behavior. The journey toward AI integration is complex. Many organizations struggle with outdated IT infrastructure, lack of skilled personnel, data privacy concerns, and insufficient leadership support. This study focuses on understanding how businesses in Mumbai perceive, adopt, and integrate AI into their decision-making frameworks. By examining the barriers and enablers of AI adoption, this research seeks to identify actionable strategies that can help organizations leverage AI for sustained competitive advantage.

LITERATURE REVIEW:

Artificial Intelligence (AI) is often described as technology that can take on tasks normally done by people, like seeing, learning, reasoning, or solving problems. According to (Wamba-Taguimdje et. all. 2021), AI can be seen in three ways, as a scientific field, as a set of technologies, such as machine learning and deep learning, and as capability businesses use.

In this sense, AI is more than just automation. It doesn't simply follow pre-set rules. It can learn from data, adapt to new situations, and make sense of its environment. AI is described as both a tool and a partner something that can "sense, interpret, learn, plan, and act" with a degree of independence (Wamba-Taguimdje et all, 2021).

AI systems learn from data through supervised, unsupervised, and reinforcement approaches. These capabilities underpin predictive analytics, optimization, and risk assessment in business contexts. Importantly, scholars highlight AI's role in augmenting decision-making rather than replacing it. It is found that explainable AI (XAI) often improves decision performance, particularly in text-based tasks. Organizational structures must adapt to leverage AI for effective collaboration between humans and machines (Hemmer and Schemmer 2022).

In today's fast-moving digital business world, success depends on making quick, informed decisions that connect with customers and respond to changing market conditions. It's similar to navigating a busy marketplace, where every choice matters for staying competitive (Enholm et al., 2021). Data plays a central role in modern decision-making, and when combined with artificial intelligence (AI), its value grows even more. AI can process massive amounts of information at incredible speed and uncover insights that people might overlook. Acting like a smart assistant, AI uses past data to predict future trends, customer behaviors, and market shifts helping organizations make data-driven decisions and stay ahead of their competitors (Gupta et al., 2021).

Lee, Scheepers, Lui, and Ngai (2023) conducted a systematic literature review to explore how Artificial Intelligence (AI) is implemented in organizations. Their study identified four key dimensions influencing AI adoption — organizational, technological, information systems, and people-related factors. Major challenges highlighted include legacy infrastructure issues, data quality and privacy concerns, lack of skilled personnel, and resistance to change. The authors emphasize that successful implementation requires leadership commitment, ethical governance, robust infrastructure, and continuous employee training. They conclude that AI can significantly enhance efficiency and decision-making but note that research remains limited in context-specific and developing economies.

Khanfar, Kiani Mavi, Iranmanesh, and Gengatharen (2025) conducted a systematic literature review analyzing 90 studies to identify the key factors influencing the adoption of Artificial Intelligence (AI) systems. The authors classified these factors into five categories technological, organizational, environmental, social, and individual. They found that successful AI adoption depends not only on technological readiness but also on leadership support, organizational culture, user trust, and regulatory context. The study highlights that firms often overlook human and environmental factors, leading to adoption challenges, and recommends a holistic approach that integrates all five dimensions for effective AI implementation.

Booyse and Scheepers (2023) explored what prevents organizations from using AI to fully automate decision-making usually done by knowledge workers. Using qualitative interviews with 13 senior managers in South Africa, the study identifies seven major barriers: (1) strong reliance on human social dynamics and interpersonal norms; (2) restrictive regulation and liability concerns; (3) the need for creativity, intuition, and spontaneity which AI struggles to replicate; (4) lack of transparency, which undermines trust; (5) challenges posed by dynamic and fast-changing business environments; (6) fear of loss of control and power by current decision makers; and (7) ethical and non-discriminatory considerations. The authors apply Adaptive Structuration Theory to understand how social and technological structures interact and suggest that organizations need robust change management, governance, and ethical oversight to overcome these barriers.

RESEARCH METHODOLOGY:

• Research Design

This study adopts a descriptive and analytical research design, aiming to explore how organizations in Mumbai are adopting Artificial Intelligence (AI) in their business decision-making processes. The descriptive design helps in understanding the current state of AI adoption, while the analytical approach assists in evaluating the impact, challenges, and readiness of firms integrating AI technologies into their operations. The study combines both quantitative and qualitative methods to obtain a holistic view of the phenomenon.

• Research Objectives

1. To examine the current level of AI adoption among businesses in Mumbai.
2. To identify the challenges faced by organizations while integrating AI into their decision-making processes.
3. To analyze the organizational readiness, including leadership commitment, infrastructure availability, and openness to innovation.
4. To propose recommendations for enhancing AI-driven business decision-making.

• Data Collection Methods

1. **Primary Data:** Data was collected through a structured questionnaire distributed to business professionals, managers, and IT executives across various sectors in Mumbai. The questionnaire focused on organizational readiness, AI infrastructure, leadership involvement, and perceived benefits and challenges of AI implementation.
2. **Secondary Data:** Secondary data was obtained from academic journals, industry reports, research publications, and credible online sources related to AI applications in business and management.

• Sampling Design

A convenience sampling method was used due to accessibility and time constraints. The target population included professionals from medium and large-scale enterprises in Mumbai who are either involved in or influenced by AI adoption decisions.

1. **Sample Size:** 403 respondents
2. **Respondent Profile:** Business managers, data analysts, IT professionals, and decision-makers.
3. **Sampling Area:** Mumbai Metropolitan Region

• Data Analysis Techniques

Collected data was analyzed using statistical tools and techniques such as:

1. Descriptive Statistics for summarizing data (frequencies, percentages, and mean values).
2. ANOVA (Analysis of Variance) to test the significance of relationships between variables such as infrastructure readiness, leadership commitment, and AI adoption levels.
3. Interpretation Analysis to identify trends and insights from the data, highlighting major barriers to successful AI integration.

Scope and Limitations

The scope of this study is limited to the Mumbai region, focusing on businesses operating in various sectors such as finance, retail, manufacturing, and IT.

However, certain limitations exist:

1. The study relies on self-reported data, which may introduce response bias.
2. Limited generalizability beyond the Mumbai business ecosystem.
3. Rapid technological advancements in AI could render some findings time-sensitive.

DATA ANALYSIS & INTERPRETATION:**1. Difficulty in integrating AI systems with legacy IT infrastructure**

Table: Difficulty in integrating AI systems with legacy IT infrastructure		
	Frequency	Percent
Not at all Challenging	36	9
Slightly Challenging	182	45
Moderately Challenging	88	22
Very Challenging	67	17
Extremely Challenging	30	7
Total	403	100

The above table reveals that integrating Artificial Intelligence (AI) systems with legacy IT infrastructure poses a moderate challenge for most organizations. Nearly half of the respondents (45%) found the process "Slightly Challenging," indicating manageable yet persistent difficulties in aligning old systems with new AI technologies. Meanwhile, 22% rated it as "Moderately Challenging," and a combined 24% (17% "Very Challenging" and 7% "Extremely Challenging") reported significant obstacles, highlighting that integration complexity remains a concern for many firms. Only 9% of respondents experienced no challenges at all. These findings suggest that while many organizations have begun adapting their systems for AI, substantial technical and compatibility barriers still hinder seamless integration, particularly in firms with outdated infrastructure.

2. Ensuring AI models can scale and adapt to varying business requirements

Table: Ensuring AI models can scale and adapt to varying business requirements		
	Frequency	Percent
Not at all Challenging	46	11
Slightly Challenging	57	14
Moderately Challenging	108	27
Very Challenging	172	43

Extremely Challenging	20	5
Total	403	100

The above table that ensuring AI models can scale and adapt to diverse business requirements remains a significant challenge for many organizations. A majority of respondents (43%) classified this issue as “Very Challenging,” while 27% rated it as “Moderately Challenging.” Together, this suggests that nearly 70% of businesses face considerable obstacles in achieving flexibility and scalability in their AI systems. Only a small portion—14% found it “Slightly Challenging,” and 11% “Not at all Challenging”, indicating that few firms have achieved mature, adaptive AI capabilities. These findings highlight the need for organizations to invest in more flexible AI frameworks, robust data architectures, and adaptive algorithms to ensure their AI solutions remain effective amid evolving business demands.

3. ANOVA Analysis

Table: ANOVA Analysis						
		Sum of Squares	df	Mean Square	F	Sig.
1. Availability of IT infrastructure to support AI technologies	Between Groups	493.390	6	82.232	443.893	.000
	Within Groups	73.359	396	.185		
	Total	566.749	402			
2. Willingness and ability to invest in AI technologies	Between Groups	364.102	6	60.684	217.338	.120
	Within Groups	110.568	396	.279		
	Total	474.670	402			
3. Commitment from senior leadership to adopt AI in the business strategy	Between Groups	324.304	6	54.051	196.786	.000
	Within Groups	108.768	396	.275		
	Total	433.072	402			

The ANOVA analysis provides insights into the significance of various organizational factors influencing AI adoption in business decision-making. The results show that availability of IT infrastructure ($F = 443.893$, $\text{Sig.} = .000$) and commitment from senior leadership ($F = 196.786$, $\text{Sig.} = .000$) have statistically significant impacts on AI integration, as their significance values are below the 0.05 threshold. This implies that both technological readiness and strong leadership commitment play crucial roles in the successful adoption of AI technologies.

The willingness and ability to invest in AI technologies ($F = 217.338$, $\text{Sig.} = .120$) did not show a statistically significant difference across groups, suggesting that while financial investment is important, it alone may not determine successful AI adoption without complementary factors such as infrastructure support and leadership involvement.

The findings emphasize that AI implementation success depends not merely on financial readiness but also on the alignment of infrastructure, leadership vision, and strategic commitment toward digital transformation.

CONCLUSION:

The study underscores that AI is a catalyst for smarter, faster, and more accurate business decision-making. In the context of Mumbai-based enterprises, the findings highlight both optimism and restraint, while AI's potential is widely acknowledged, its full-scale adoption remains hindered by infrastructural and organizational challenges.

Companies that effectively integrate AI within their decision-making frameworks gain strategic advantages such as enhanced forecasting accuracy, improved customer personalization, and operational agility. However, success depends on aligning AI initiatives with organizational goals, securing leadership commitment, and ensuring continuous learning and adaptability.

To move forward, businesses must invest not only in technology but also in people and processes. Encouraging data-driven cultures, upgrading legacy systems, and ensuring ethical AI governance will be essential to unlocking the complete value of AI. Ultimately, AI is not a substitute for human judgment but a sophisticated extension of its empowering organizations to make more informed, intelligent, and impactful business decisions.

REFERENCE:

1. Han, J., Zhang, Y., Yang, Y., Wu, Z., & Jiang, Y. (2019). Recent advances in deep learning for audio-visual speech recognition: A review. *arXiv preprint arXiv:1911.03977*. <https://arxiv.org/abs/1911.03977>
2. Hemmer, P., Schemmer, M., & Langer, M. (2022). The impact of explainable artificial intelligence on human decision-making: A systematic review. *arXiv preprint arXiv:2205.05126*. <https://arxiv.org/abs/2205.05126>
3. Shrestha, Y. R., Ben-Menahem, S. M., & von Krogh, G. (2021). Organizational decision-making structures in the age of artificial intelligence. *California Management Review*, 63(4), 94–117. <https://doi.org/10.1177/00081256211003360>
4. Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. *California Management Review*, 61(4), 15–42. <https://doi.org/10.1177/0008125619867910>
5. van Esch, P., Black, J. S., & Ferolie, J. (2021). Marketing AI recruitment: The next phase in job application and selection. *Journal of Business Research*, 124, 353–365. <https://doi.org/10.1016/j.jbusres.2020.11.037>
6. Wamba-Taguimdje, S.-L., Fosso Wamba, S., Kala Kamdjou, J. R., & Tchatchouang Wanko, C. E. (2021). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. *Business & Information Systems Engineering*, 63(5), 457–470. <https://doi.org/10.1007/s12599-020-00637-3>.
7. Enholm, I. M., Papagiannidis, E., Mikalef, P., Krogstie, J., & The Author(s). (2021, August). Artificial Intelligence and Business Value: a Literature Review, *Information Systems Frontiers* (Vols. 24–24, pp. 1709–1734). Retrieved from <https://doi.org/10.1007/s10796-021-10186-w>
8. Gupta, S., Modgil, S., Bhattacharyya, S., & Bose, I. (2021). Artificial intelligence for decision support systems in the field of operations research: review and future scope of research. *Annals of Operations Research*. Retrieved from <https://doi.org/10.1007/s10479-020-03856-6>.
9. Lee, M. C. M., Scheepers, H., Lui, A. K. H., & Ngai, E. W. T. (2023). *The implementation of artificial intelligence in organizations: A systematic literature review*. *Information & Management*, 60(5), Article 103816. <https://doi.org/10.1016/j.im.2023.103816>.
10. Khanfar, A. A., Kiani Mavi, R., Iranmanesh, M., & Gengatharen, D. (2025). *Factors influencing the adoption of artificial intelligence systems: A systematic literature review*. *Management Decision*. <https://doi.org/10.1108/MD-05-2023-0838>.
11. Booyse, D., & Scheepers, C. B. (2023). Barriers to adopting automated organisational decision-making through the use of artificial intelligence. *Management Research Review*, 47(1), 64-85. <https://doi.org/10.1108/MRR-09-2021-0701>.