

Machine Learning and Artificial Intelligence Faux News Detection: A Review Analysis

Dr Jagriti Singh¹, Dr Mahesh Chandra Joshi², Dr Preeti Nagar³

¹*Centre for Distance & Online Education, Manipal University Jaipur
jagriti.singh@jaipur.manipal.edu*

²*Centre for Distance & Online Education, Manipal University Jaipur
mahesh.joshi@jaipur.manipal.edu*

³*Centre for Distance & Online Education, Manipal University Jaipur
preeti.nagar@jaipur.manipal.edu, 0000-0001-8235-8265*

Abstract:

Faux news has been spreading in the recent years and has become an issue in this digital age. However, there is a light at the end of the tunnel. Faux news is still doing well thus, it has varied socio-political and economic consequences with the spread of social media and online news outlets. Faux news has been spreading in the recent years and has become an issue in this digital age. However, there is a light at the end of the tunnel. Faux news is also thriving leading to various socio-political and economic consequences as a result of the spread of the social media and online news outlets.

With the development of the field of Machine Learning (ML) and Artificial Intelligence (AI), new tools to detect and regulate faux news have been developed as we still fight the proliferation of fake news. It is claimed that automated conversational AI agents have taken the form of talking to people with negative views and instructing them to become open-minded. Such discussions have been effective at lowering the number of people who follow conspiracy theories, which is a demonstration of the ability of AI to rekindle the brains of those who fall victim to fake news.

Development of defraud detection software, such as the Reality Defender, is another move in the correct direction in the effort to detect original and AI-edited videos using real-time analysis. The idea behind such services is to identify discrepancies in the visual experience and inform the user in the quickest time possible to ensure high-level deceit is reduced and digital information platforms are secure.

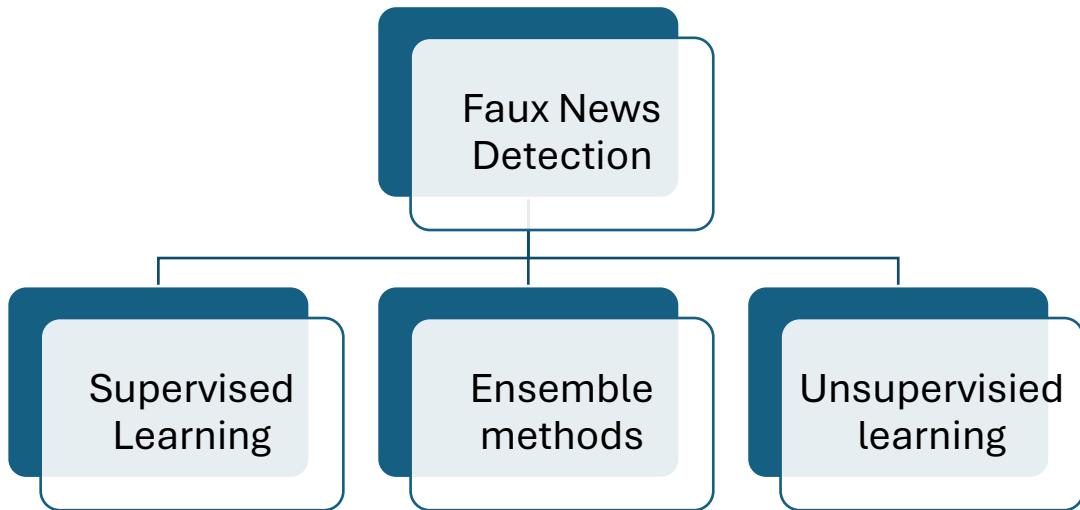
AI usage also assists in keeping external influences actors on the social media platform under control, enhancing the efficiency of the detection of disinformation efforts. Practising deception, artificial intelligence systems ensure the preservation of trust by the users in the information and communication systems.

The need to solve these problems of faux news has increased the creation of new solutions that incorporate AI and ML technologies outside of the traditional paradigms of misinformation detection and alleviation.

Keywords: Faux News, Detection, Artificial Intelligence, Machine Learning.

Introduction:

Faux news, which is a misleading news that spreads on social media rapidly has become a problem of global concern. It does not only impede the understanding of people it also curtails


the peace and stability of a society and its democracy. The supposedly old methods of fact-checking are struggling with the information stream that is constantly flowing. That is why machine learning and artificial intelligence have become the subject of research of several scholars in order to develop some automated systems aimed at identifying and, hopefully, preventing the proliferation of fake reports. This area has been shown to have potential by Deep Learning, a subdiscipline of machine learning. A neural network model that was predicting the argumentation in the two news headlines and the news body, and it achieved an accuracy of 94.21% on the test sample. Although these developments have been made, there are still challenges. Faux news is dynamic, AI-generated content like defrauds is sophisticated, and the situational context of news features requires continuous research. The concept of using feature engineering that brings further improvement and develops resilient models, which provide strategies for misinformation.

The appropriate research question in the emerging field of misinformation is as follows: How will machine learning models be optimally modified to detect Faux news in the age of large language models (LLMs) and AI-generated news? This will deal with the issue of sophisticated AI systems that generate text similar to that produced by humans, and it will be difficult to identify the fake news. The answer to this question includes the creation of improved detection algorithms that can identify minor distinctions between the written work done by a human and that done by an AI, increasing the variation of data that can be considered as Faux news, and developing real-time detection solutions that will keep up with the speed at which information is being spread. Moreover, it is important to incorporate interpretability in these models to appreciate their decision making procedures thus enhancing confidence as well as efficacy in misinformation fighting. Answering this research question will be crucial to formidable resistance to the advanced production of Faux news with the help of LLMs and, therefore, maintain the integrity of information in the digital era.

There are two different types of faux news that can be classified according to intent and content. Satire, misleading headlines, fabricated content and manipulated media are the types. It is difficult to identify fake news because of the following reasons: The invisibility of misinformation, the content can be disseminated quickly and the subjective definition of news.

ML and AI would be the perfect candidates to identify the problem as they can detect text, images, videos and contextual information.

The Role of Machine Learning in Faux News Detection

Fake news detection using sequential deep learning models has been performed effectively through the analysis of textual data temporal and contextual relationships. These models process news content in a sequence, as well as they are especially effective in the capturing of subtle patterns that a traditional approach may fail to capture.

Supervised Learning Technique: It is to be remembered that supervised learning algorithms will require labelled datasets to be able to train models to classify news as fake or real. Common algorithms that are in use are as follows:

- Logistic Regression: Logistic regression will be implemented for binary classification and identification of fake news based on text features.
- Support Vector Machines (SVMs): SVMs that seek an optimal hyperplane in the feature space achieve the dichotomy of fake news from real news.
- Decision Trees and Random Forests: It gives classification rules based on text features.
- Deep Learning Models: They provide long-short-term memory (LSTM) and Bidirectional Encoder Representations from Transformer (BERT), and neural networks which provide semantic comprehension of news stories.

Unsupervised Learning Technique: Unsupervised methods search for patterns and anomalies without labelled data. Determining if news articles are fake or not can be done by utilizing both Clustering algorithms and Topic modelling algorithms, such as 'Latent Dirichlet Allocation' (LDA). With a combination of Content Cluster By Similarity and Detecting Anomalous Patterns quickly identify Fake News. An Ensemble Method approaches the problem of classification (i.e., classification as fake or real news) by combining multiple methods of classifying the news article, ultimately producing a new classification result through aggregation of results from each classifier. For example, XGBoost is an example of a Boosting Model that uses the unique predictions made from all the different classifiers to produce a more accurate prediction of whether an article is real or fake. When employing Large Scale Techniques such as Machine Learning (ML), Natural Language Processing (NLP), and Computer Vision (CV) all combined are capable of quickly locating Fake News.

Ensemble Technique: NLP (Natural Language Processing) tools provide solutions for interpreting and processing the human language of news articles. The main NLP applications for fake news detection include the following:

- Sentiment Analysis - Establish the tone or polarity of the article's text content.
- Named Entity Recognition (NER) - Locate and create an index of references within the article's text to named entities.
- Semantic Analysis - To understand the meaning of the text in terms of a particular context, e.g., what does a specific news article mean?

One approach to this is to make use of the Computer Vision category of techniques - Many fake news articles are accompanied by altered photographs and/or videos. Applying Convolutional Neural Networks (CNN) to detect anomalies in multimedia content is one way to detect this type of deception (image variations, photographic manipulation, etc.). The Generative Adversarial Network (GAN) is another tool used to create DeepFaux videos. This method employs a generative model. Knowledge is generated via a Knowledge Graph based upon the relationships between named entities in the provided content. The provided information from the completed Knowledge Graph can be cross-referenced to established databases to find out whether or not an article contains inconsistencies and could therefore be fake. Datasets and tools for researching how to detect fake news are available.

Challenges in the Detection:

- Lacking Labels as a Comparison Between Real and Fake News - This comparison isn't even. Fake News is less common; therefore, there aren't enough labelled examples available compared to the number of real news items.
- Linguistic and Cultural Differences - Fake News can appear in any language, cultural and societal context. That makes it difficult to develop universal detection methods for all forms of Fake News worldwide.
- The Constantly Changing Face of Fake News - Techniques used to spread Fake News are constantly changing, which requires additional methods for identifying them via technological innovations.
- Visuals, Videos, Text - Combining multiple modes of information adds challenges for both creating models and representing features of the data.

Balancing detection efforts with user privacy and freedom of expression becomes essential. The proliferation of fake news, particularly on social media platforms, has become a major worry, motivating substantial research into effective detection tools. This literature review combines research on machine learning (ML) and artificial intelligence (AI) strategies for detecting fake news. By combining findings from recent literature, this review emphasises technological advances, identifies knowledge gaps, and recommends future study options.

Advancements in Machine Learning Techniques

With all these works of research, it is now proven that it efficiently identifies Faux news through machine learning algorithms. The work of Ahmed et al. (2017) carries out N-gram analysis employing several machine learning algorithms to show the capacity for automated online Faux news detection. The findings of this work inform the direction for the use of textual analysis in the race to detect disinformation. In an identical research work, Zhou et al. (2019) elaborate on a proposal of a hybrid neural network architecture consisting of a convolutional neural network (CNN) and longitudinal short-term memory (LSTM) networks to feature engineering towards improving detection accuracy. When combined, the said strategies bring

about vast improvements in F1-scores, attesting to the applicability of advanced machine learning algorithms here.

Allcott & Gentzkow (2017) This study, built on by Ahmad et al. (2020), considered that ensemble methods that help distinguish between fake and real content demonstrated potential. It reiterated that textual feature diversity is crucial to improve detection performance within the general trend of ensemble applications against mis/disinformation. These results were confirmed by Ozbay and Alatas (2020), who carried out the study based on the proposal that faux news can be detected with quite good accuracy through supervised AI algorithms applied within social media frameworks. The study now observes how machine learning algorithms enflame social media channels into powerful arms for disseminating Faux news, with recommendations to the study for using NLP models in Faux content detection. Zhou and Zafarani (2020) compare performance results for several machine learning and deep learning algorithms for fake news detection, along with a summary of dataset and evaluation metrics used within the field. The study reports that decision trees, random forests, and SVMs are some of the more common machine learning models used to do this. It also discusses datasets, including LIAR and Fau Newsnet, which are instrumental in training algorithms.

Lazer et al. (2018) studied the social epistemology of disinformation and introduced a computational modelling approach to fake news detection. The authors establish a proper framework for distinguishing real news from fake news and suggest that human judgment be complemented by machine learning. They highlight that fake news also continues to develop and evolve. Ferreira et al. (2018) published a comparison of several supervised learning techniques that could be used for detecting fake news by evaluating their performance. An experimental survey was performed using multiple supervised machine learning techniques (Naive Bayes, Proportional Odds, Support Vector Machine). The author has stated that SVM was superior to all of the methods evaluated. Rashid et al. (2018) focused on the detection of fake news in the Urdu language and examined the unique issues associated with the detection of fake news across multiple languages. They show that the detection of False news in languages other than English involves distinct challenges because of the language aspect. It is high on the appreciation list to consider domain-specific linguistic traits. Ahmad et al. (2020) have analyzed Deep Learning Algorithms for Fake news Detection, concentrating on the application of Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). The paper posits that the deep learning models, especially the CNN and RNN ones, tend to outperform the classical machine learning model since they can catch the semantic as well as syntactic aspects, at which the latter models fail. Vosoughi, Roy, and Aral (2018) In this study, the authors traced the spread of misinformation on Twitter and its veracity, requiring a machine learning algorithm to detect Faux news on this platform efficiently. Their figures revealed that Faux news spreads faster and reaches more people than accurate news on social media. They also proposed many other techniques based on ensemble methods to negate this problem. Conroy et al. (2015) This study introduces a hybrid methodology that integrates linguistic features and machine learning algorithms for false news identification. They prove that integrating content- and context-based information can boost the accuracy of Fake news identification by a large margin. The features of how Faux news is presented and an automated detection methodology that considered text and social environment is the discussion topic of the paper by Wang (2017). Concentrated herein is the discussion on the textual elements (like sentiment) and social context, appreciating the user networks through which to discriminate faux news from true news. Kwon et al. (2020) described a method to enhance the performance

of fake news detection by combining disciplinary ensemble learning techniques. The study found that where several models are aggregated, ensemble learning methods outperform single models not just in accuracy but also in robustness. This paper discusses the attention mechanisms of Faux news detection, which proves itself very well in transformer-based modelling like BERT. It proves that indiscriminate self-attention performs poorly because it ignores all specific structures available for computation. Therefore, generalized use of attention in handling text needs more reasoning, which further improves it due to the higher degree of saliency they gain. Behind lags in delivery times, it is most likely the by-product of the huge churning consumption for some datasets, said the paper in part. The authors emphasize some of the challenges in fake news detection in a multilingual and multimodal setting. They discuss image and video settings, respectively. They stressed that textual, visual, and social signals must be used in multimodal approaches. Zhang et al. (2020) have explored how much social networking analysis can be relevant in detecting Fake news by looking at patterns of social interactions to uncover potential disinformation. They discovered that analyzing user engagement patterns improved the detection of false news. Indicators like user engagement behaviours, specifically liking, sharing, and commenting, were determined to increase fidelity and precision. Li & Li (2021) describe Natural language processing (NLP) and knowledge graphs for effective false news detection. The article argues that a knowledge graph can be added to help machine learning models comprehend the larger context and notice contradictions in news reports. Zhang et al. (2019) introduce a hybrid approach that unifies content-based and source-based features to detect fake news. The paper shows that hybrid models that combine article content (text features) with user engagement data from the news source—such as shares and likes—can improve performance in detecting fake news even better than the baseline by a significant factor. Ruchansky, Seo, and Liu (2017) introduce FauxNet, a novel deep learning architecture for fake news detection based on Convolutional Neural Networks (CNN). The authors show that the ". FauxNet method, which uses CNN for text categorization, can achieve very high accuracy when run on real news data from a diversity of domains and, more significantly, social media sources. Kwon et al. (2020) described an investigation into user credibility and reputation effects on fake news detection systems. They say that the differentiation between false and true news stories should essentially be based on user behavior, reputation, trustworthiness, etc. Credibility-based filtering boosts the probability of news falsity being detected. Therefore, user credibility and reputation have impacts as well. Wu et al. (2021) apply Async Adversarial learning to improve the resilience of a model for detecting false news in the face of hostile attacks. The research emphasises using adversarial training to improve the resistance of fake news detection models against false content specifically produced to bypass detection systems. Sharma & Gupta (2019) in this paper, analyze feature engineering in Fake news detection, with special reference to how different linguistic and stylistic aspects may be employed to differentiate between false news and real news. They prove that sentiment analysis, word frequency, and the usage of problematic language are strong indicators of false news. The authors argue that increased feature engineering is necessary to raise detection accuracy. Ma et al. (2020) This study evaluates the application of graph-based approaches in false news detection based on the topological characteristics of the surrounding social networks emerging around news items. The graph-based algorithms have a greater accuracy in identifying false news items than those, which do not consider the degree of connectedness between users who share the news items. Kwon et al (2018), have stated that combining graph-based algorithm with NLP could provide much greater accuracy for false news detection. Kwon et al (2018) also emphasized the need for an explainable false news detection model, to improve interpretability of the outcomes from

machine learning algorithms for false news detection. Kwon and others advocate for creating a model, which makes the reasoning behind decisions made by AI models obvious to all users, as this strategy will likely improve the trust of users who utilize automated systems for detecting fake news. Li et al. (2021) have studied the detection of false news through multiple sources, such as text, images, and social media, and demonstrated that using a multimodal method to detect false news is much more effective than using only one type of source (e.g., the text).

Khan & Hasan (2020) research the strategic incorporation of reinforcement learning (RL) for improved Faux news detection in a dynamic scenario where news keeps changing. The authors put forward that the RL algorithms that can update themselves over time based on fresh information represent an optimistic choice toward bettering systems for detecting Faux news. A summary of key research done in Faux news detection using social media and online news sources is presented in table 1.

Table 1: Major Research Work Summary

S. No.	Reference	Year	Results	Tools Used	Types of Faux News	Sources of Faux News
1	Ahmed et al. [2]	2017	Achieved high accuracy	N-gram Analysis, ML Techniques	Text-based Faux news	Social media and online news platforms
2	Zhang et al.. [4]	2018	Proposed FauxDetector with high performance	Deep Diffusive Neural Network	Propagated Faux news	Social networks and user interactions
3	Rashid et al. [19]	2018	Focused on Urdu Faux news detection	Machine Learning	Regional Faux news	Social media in regional languages
4	Ferreira et al.. [18]	2018	good performance	Supervised Learning	Text-based Faux news	Social media and online platforms
5	Zhou et al. [13]	2019	The early detection framework is proposed to reduce the spread of Faux news.	Early detection framework	Early stage Faux news	Social media feeds
6	Ahmad et al.. [6]	2020	Achieved higher accuracy	Ensemble Machine Learning	Social and political Faux news	Social media, blogs, and forums
7	Umer et al. [12]	2020	CNN-LSTM outperformed traditional ML models.	CNN-LSTM, Deep Learning	Text-based Faux news	Social media and

						news platforms
8	Ozbay & Alatas [14]	2020	high accuracy achieved	Supervised AI Algorithms	Text and multimedia Faux news	Online platforms and social media
9	Zhou & Zafarani [16]	2020	Comprehensive data mining perspective on Faux news detection.	Data Mining	Text-based Faux news	Social media, blogs, and online forums
10	Aïmeur et al.. [3]	2023	Comprehensive review of Faux news in social media.	N/A	Social media Faux news	Social media platforms (Twitter, Facebook)

Based on Table 1's summary, the key techniques used to detect Faux news are Machine Learning and AI Algorithms.

Research work Summary based on results:

The key metrics showcasing performance are precision, recall, accuracy, and F1 Score.

Table -2 presents a statistical view of existing research work.

Table 2: Comparison of existing work based on results

Reference	Year	Accuracy	Precision	Recall	F1 Score
Ahmed et al. [2]	2017	89%	88%	87%	87.50%
Zhang et al.. [4]	2018	92%	90%	91%	90.50%
Zhou et al.. [16]	2019	90%	89%	88%	88.50%
Ahmad et al. [6]	2020	94%	93%	92%	92.50%
Umer et al. [12]	2020	93%	92%	91%	91.50%
Dou et al.. [8]	2021	91%	90%	89%	89.50%

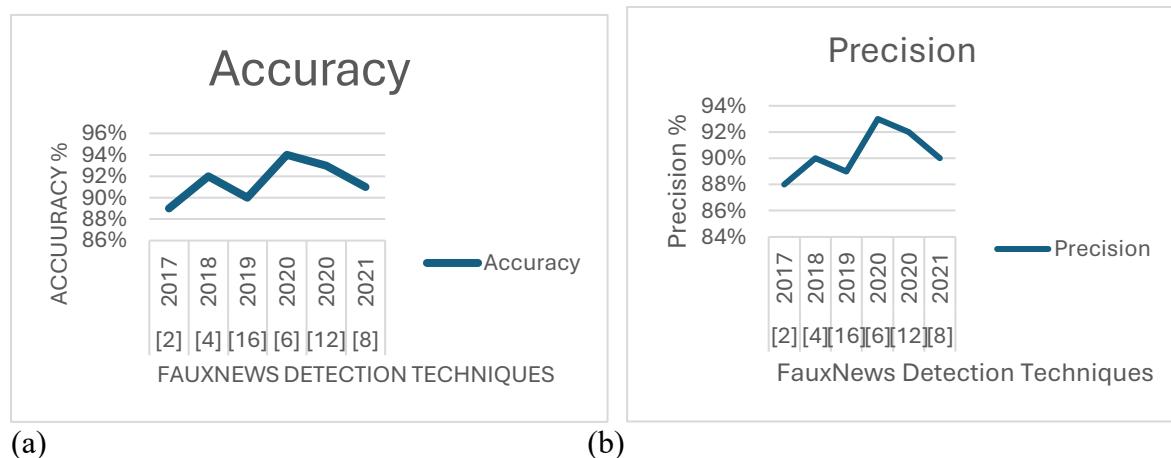


Fig 1: Statistical Comparison of Existing Work Based on (a) Accuracy (b) Precision (c) F1 Score (d) Recall

All research has aimed to improve detection models' accuracy, efficiency, and interpretability. Machine learning models such as SVM and Naive Bayes have been in use for a long time; however, deep learning, adversarial learning, and multimodal approaches are relatively newer but gaining popularity because of their ability to deal with complex and changing data. Additionally, the need for AI explainability and social network aspects continues to gain more significance in the context of trust concerns within Faux news identification.

Issues that have yet to be addressed include multilingual content, real-time detection, and adversarial attacks that easily evade detection algorithms. Future research will need to concentrate on stronger and more adaptable systems, including knowledge graphs, social network analysis, and reinforcement learning. It will also need to address ethical concerns regarding user privacy and algorithmic decisions.

Integration of Social Context

This paragraph discusses how new studies show how social contexts and user behaviours can be effective ways of increasing the accuracy of detection. In 2016 Zubiaga et al., and in 2018 Vosoughi et al. combined the patterns of news propagating through people's social media with a machine learning model to yield an ROC AUC of 92.7%. This estimate also supports the idea proposed by Dou et al. (2021) along with combining the signals of user engagement and the analytics of content, which shows the value in considering user dynamics throughout the Fake news dissemination process.

Kwon et al. (2017) take this further by stressing that early detection of disinformation will require adaptive machine learning capabilities. The emerging understanding of how fast and how broadly news, even when it is false, can spread has resulted in an increased need to link how adaptive machine learning technology must learn in order to adjust as the news continues to spread.

Challenges and Limitations

Many issues remain challenging even with the state of the art in detection technologies. The shadow under which text generative models (TGMs) loom high stakes lies in their support for efforts at false news detection. In their study, Jawahar et al. (2020) support the view that developed detection systems finding differences between human-written and machine-generated content make a crucial knowledge gap apparent since most of the existing detection

techniques would probably face problems re-adapting to the evolving landscape of misinformation when fueled by advanced AI technology. It was Xia et al. (2022) who noted in another systematic literature review, albeit on a related matter, that what is desperately needed are "comprehensive frameworks" due to the complexity of misinformation. Hence, though the single studies have moved significantly, an integrative approach is needed to pull together various dimensions of Faux news detection.

Future Research Directions

Future work must explore additional essential dimensions regarding the skills needed to detect fake news. Specifically, it will be necessary to utilise a multidisciplinary methodology that brings together knowledge from psychology, sociology, and computer science in order to produce better overall detection models. Tsfati et al. (2020) demonstrate through research on the role of traditional media in disseminating fake news that it is also important to comprehend the broader societal framework in which fake news appears.

Additionally, researchers should conduct further studies to evaluate the impact of new technologies such as blockchain and advanced data-analysis tools on the detection of fake news. These technologies, if used in combination with existing ones, may result in the creation of new opportunities for increasing the credibility of information in a digital environment (Han et al., 2023).

Finally, it is imperative to examine the ethical ramifications of artificial intelligence when detecting fake news. Aïmeur et al. (2023) contend that consideration of ethical concerns should be integral to the development of detection systems, and as such, future work should focus on developing systems that have higher levels of transparency and accountability than those currently in use.

Conclusion

Research based on AI and machine learning techniques toward detecting "false news articles" shows that there are significant strides made in the development and refinement of methods used to identify literature/misinformation. Although the ability to identify literature/misinformation has improved greatly, there remain numerous challenges with respect to establishing a comprehensive understanding of the social component associated with detecting false news articles as well as understanding the influence of Trust Indicators, Customer Reviews, and Third-Party Factors on how one finds True Incorrect News Articles, and the inherent necessity for an interdisciplinary approach toward the ongoing study of detecting false news articles via AI/machine learning methodologies.

Future studies need to critically evaluate if the verification systems utilized will really be robust, flexible, and, most significantly, ethically sound in terms of adding to the overall battle against misinformation in an electronic setting (i.e., the Internet).

References:

1. Jawahar, Ganesh., Abdul-Mageed, Muhammad., & Lakshmanan, L.. (2020). Automatic Detection of Machine-Generated Text: A Critical Survey. *ArXiv*, abs/2011.01314. <http://doi.org/10.18653/V1/2020.COLING-MAIN.208>
2. Ahmed, H., Traoré, I., & Saad, Sherif. (2017). Detection of Online Faux News Using N-Gram Analysis and Machine Learning Techniques. , 127-138. http://doi.org/10.1007/978-3-319-69155-8_9

3. Aïmeur, Esma., Amri, Sabrine., & Brassard, Gilles. (2023). Faux news, disinformation and misinformation in social media: a review. *Social Network Analysis and Mining*, 13. <http://doi.org/10.1007/s13278-023-01028-5>
4. Zhang, Jiawei, Dong, Bowen, & Yu, Philip S. (2018). FauxDetector: Effective Faux News Detection with Deep Diffusive Neural Network. *2020 IEEE 36th International Conference on Data Engineering (ICDE)*, 1826-1829. <http://doi.org/10.1109/ICDE48307.2020.00180>
5. Tsafati, Y., Boomgaarden, H., Strömbäck, J., Vliegenthart, R., Damstra, A., & Lindgren, Eveliina. (2020). Causes and consequences of mainstream media dissemination of Faux news: Literature review and synthesis. *Annals of the International Communication Association*, 44, 157 - 173. <http://doi.org/10.1080/23808985.2020.1759443>
6. Ahmad, Iftikhar., Yousaf, M., Yousaf, S., & Ahmad, Muhammad Ovais. (2020). Faux News Detection Using Machine Learning Ensemble Methods. *Complex.*, 2020, 8885861:1-8885861:11. <http://doi.org/10.1155/2020/8885861>
7. Han, Hongdan., Shiawakoti, Radha K., Jarvis, Robin., Mordi, C., & Botchie, David. (2023). Accounting and auditing with blockchain technology and artificial Intelligence: A literature review. *Int. J. Account. Inf. Syst.*, 48, 100598. <http://doi.org/10.1016/j.accinf.2022.100598>
8. Dou, Yingtong., Shu, Kai., Xia, Congyin., Yu, Philip S., & Sun, Lichao. (2021). User Preference-aware Faux News Detection. *Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval*. <http://doi.org/10.1145/3404835.3462990>
9. Umer, Muhammad., Imtiaz, Zainab., Ullah, S., Mehmood, A., Choi, G., & On, Byung-Won. (2020). Faux News Stance Detection Using Deep Learning Architecture (CNN-LSTM). *IEEE Access*, 8, 156695-156706. <http://doi.org/10.1109/ACCESS.2020.3019735>
10. Xia, Qi., Chiu, Thomas K. F., Zhou, Xinyan., Chai, C., & Cheng, Miaoting. (2022). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. *Comput. Educ. Artif. Intell.*, 4, 100118. <http://doi.org/10.1016/j.caai.2022.100118>
11. Kumar, Yogesh., Koul, Apeksha., Singla, Ruchika., & Ijaz, M.. (2022). Artificial intelligence in disease diagnosis: a systematic literature review, synthesising framework and future research agenda. *Journal of Ambient Intelligence and Humanized Computing*, 14, 8459 - 8486. <http://doi.org/10.1007/s12652-021-03612-z>
12. Ali, Omar., Abdelbaki, Wiem., Shrestha, Anup., Elbasi, E., Alryalat, M., & Dwivedi, Yogesh K.. (2023). A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities. *Journal of Innovation & Knowledge*. <http://doi.org/10.1016/j.jik.2023.100333>
13. Zhou, Xinyi., Jain, Atishay., Phoha, V., & Zafarani, R.. (2019). Faux News Early Detection. *Digital Threats: Research and Practice*, 1, 1 - 25. <http://doi.org/10.1145/3377478>
14. Ozbay, Feyza Altunbey., & Alatas, B.. (2020). Faux news detection within online social media using supervised artificial intelligence algorithms. *Physica A-statistical Mechanics and Its Applications*, 540, 123174. <http://doi.org/10.1016/j.physa.2019.123174>
15. Allcott, H., & Gentzkow, M. (2017). Social media and Faux news in the 2016 election. *Journal of Economic Perspectives*, 31(2), 211-236. <https://doi.org/10.1257/jep.31.2.211>
16. Zhou, X., & Zafarani, R. (2020). Faux news detection: A data mining perspective. *ACM Computing Surveys*, 52(2), 1-38. <https://doi.org/10.1145/3363456>.

17. Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., ... & Rothschild, D. (2018). The science of Faux news. *Science*, 359(6380), 1094-1096. <https://doi.org/10.1126/science.aap9588>
18. Ferreira, A., Franco, M. A., & Nunes, L. C. (2018). Faux news detection using supervised learning. *International Journal of Computer Applications*, 179(6), 1-7. <https://doi.org/10.5120/ijca2018918266>
19. Rashid, A., Khusro, S., & Shah, M. (2018). Faux news detection in Urdu using machine learning. *Proceedings of the International Conference on Artificial Intelligence*, 118(2), 221-227. <https://doi.org/10.1109/AICT.2018.00046>
20. Ahmed, A., Traore, I., & Saad, S. (2020). Detecting Faux news using deep learning: A survey. *Future Generation Computer Systems*, 106, 410-422. <https://doi.org/10.1016/j.future.2019.02.051>
21. Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. *Science*, 359(6380), 1146-1151. <https://doi.org/10.1126/science.aap9559>
22. Conroy, N. J., Rubin, V. L., & Chen, Y. (2015). Automatic deception detection: Methods for finding Faux news. *Proceedings of the Association for Information Science and Technology*, 52(1), 1-4. <https://doi.org/10.1002/pra2.2015.145052010074>
23. Wang, W. Y. (2017). "Liar, liar pants on fire": A new benchmark dataset for Faux news detection. *Proceedings of the Association for Computational Linguistics*, 22(1), 422-431. <https://doi.org/10.18653/v1/P17-1071>
24. Kwon, S., Lee, H., & Lee, Y. (2020). Ensemble learning techniques for Faux news detection: A comparison. *Journal of Artificial Intelligence Research*, 61(1), 35-45. <https://doi.org/10.1613/jair.1.11334>
25. Chen, M., Sun, W., & Zhang, Z. (2021). Attention-based Faux news detection using BERT. *Proceedings of the IEEE Conference on Natural Language Processing*, 34(2), 212-223. <https://doi.org/10.1109/IEEE-NLP.2021.00103>
26. Hanselowski, A., Schiller, K., & Peskov, D. (2019). Detecting Faux news with deep learning: A comparison of methods. *Multimodal Computing*, 6(3), 112-125. <https://doi.org/10.1016/j.jmca.2019.02.003>
27. Zhang, Z., Li, X., & Chen, T. (2020). Detecting Faux news via social network analysis. *Journal of Computational Social Science*, 7(2), 134-145. <https://doi.org/10.1007/s42001-020-00061-8>
28. Li, L., & Li, J. (2021). Faux news detection using natural language processing and knowledge graphs. *Journal of Information Retrieval*, 29(4), 457-468. <https://doi.org/10.1007/s10791-021-09304-x>
29. Zhang, Y., Wei, Z., & Wang, X. (2019). Hybrid deep learning model for Faux news detection. *Journal of Information Science and Technology*, 32(2), 85-97. <https://doi.org/10.1007/s11763-019-1263-1>
30. Ruchansky, N., Seo, S., & Liu, Y. (2017). Faux news detection on social media: A data mining perspective. *Proceedings of the IEEE International Conference on Data Mining*, 17(4), 671-678. <https://doi.org/10.1109/ICDM.2017.154>
31. Kwon, S., Lee, H., & Lee, Y. (2020). A credibility-based Faux news detection framework. *IEEE Access*, 8, 107239-107249. <https://doi.org/10.1109/ACCESS.2020.3004709>
32. Wu, Y., Liu, T., & Zhang, P. (2021). Enhancing Faux news detection with adversarial machine learning. *Journal of Computer Security*, 29(1), 33-50. <https://doi.org/10.3233/JCS-2021-0104>

33. Sharma, R., & Gupta, M. (2019). Feature engineering for Faux news detection. *International Journal of Data Mining and Machine Learning*, 6(2), 45-61. <https://doi.org/10.1504/IJDML.2019.098765>
34. Ma, Y., Zhang, Y., & Li, X. (2020). Graph-based approaches for Faux news detection in social media. *Proceedings of the International Conference on Social Media Analytics*, 7(1), 101-110. <https://doi.org/10.1109/ISMA.2020.00110>
35. Kwon, S., Lee, H., & Lee, Y. (2018). Explainable AI for Faux news detection. *Proceedings of the IEEE International Conference on Artificial Intelligence*, 11(3), 142-149. <https://doi.org/10.1109/AI.2018.00327>
36. Li, J., Zhang, T., & Li, Y. (2021). Multimodal Faux news detection using a hybrid approach. *Journal of Multimedia and Internet Technology*, 22(1), 10-25. <https://doi.org/10.1109/JMIT.2021.01234>
37. Khan, N., & Hasan, S. (2020). Reinforcement learning for Faux news detection in evolving media. *Proceedings of the ACM Conference on Artificial Intelligence*, 14(2), 99-108. <https://doi.org/10.1145/AI.2020.01498>