Vol 5 Issue 2 (2025)

Strategic Evaluation of Working Capital Policies: A Quantitative Study of Indian Capital Goods Manufacturers

Aditi Mathur^{1,2}, Kamakshi Mehta³, Umesh Solanki⁴ (Corresponding Author)

¹Research Scholar, TAPMI School of Business, Manipal University Jaipur, Jaipur, Rajasthan, India, ²Assistant Professor, Amity Business School, Amity University Gurugram, Haryana, India, ³Associate Professor, TAPMI School of Business, Manipal University Jaipur, Jaipur, Rajasthan, India, ⁴Associate Professor, TAPMI School of Business, Manipal University Jaipur, Jaipur, Rajasthan, India,

Abstract

Working capital management is a cornerstone of corporate financial strategy, especially within capital-intensive industries such as the capital goods manufacturing sector. In the Indian context, where economic volatility, credit cycles, and operational constraints persist, the strategic formulation and execution of working capital policies are essential for ensuring liquidity, sustaining profitability, and enhancing financial stability. This study undertakes a quantitative and industry-specific investigation into the working capital policies adopted by Indian capital goods manufacturing companies, focusing on both investment and financing dimensions.

The research is grounded in a rigorous quantitative methodology, using secondary financial data sourced from Moneycontrol as of January 15, 2025. The initial sample of 259 companies was filtered through a systematic screening resulting in a final sample of 157 companies. The study employs descriptive statistics, ratio analysis, correlation, and regression techniques to evaluate the structure, effectiveness, and strategic alignment of working capital investment policies (WCIP) and working capital financing policies (WCFP).

The core objectives of the study are twofold: (1) to identify and analyze the specific working capital policies adopted by these firms, and (2) to explore the relationship between these policies and the fundamental financial characteristics of the companies. By investigating both WCIP and WCFP in relation to indicators such as profitability, leverage, asset structure, and liquidity, the research offers a comprehensive understanding of the financial behavior within this sector.

This study's originality lies in its focused examination of working capital practices within the Indian capital goods manufacturing industry—an area that has received limited empirical attention. Moreover, by integrating strategic considerations into the analysis of financial policies, this research bridges a critical gap between operational finance and long-term corporate strategy. The findings are expected to offer actionable insights for finance managers, policy advisors, and academic researchers, enabling improved financial decision-making and contributing to the broader discourse on sustainable industrial growth. Transparency, ethical data handling, and a structured methodological framework ensure the robustness and reliability of the study's outcomes.

Journal of Informatics Education and Research ISSN: 1526-4726 Vol 5 Issue 2 (2025)

Keyword:

Working capital management, investment policy, financing policy, capital goods industry, financial ratio analysis, strategic alignment, India, quantitative study

Introduction:

The manufacturing capital sector plays a crucial role in driving economic growth while also bearing significant responsibility for sustainability. By adopting resource-efficient technologies, optimizing supply chains, and implementing circular economy practices, these companies can minimize environmental impact while enhancing long-term profitability. As per IBEF, the manufacturing capital sector plays a crucial role in India's economic growth while also driving sustainability initiatives. With the capital goods industry's turnover projected to grow from US\$ 92 billion in 2019 to US\$ 115.17 billion by 2025, the sector is set for significant expansion. Additionally, Government initiatives like 'Make in India' and the focus on ease of doing business further present opportunities to drive sustainable manufacturing while supporting India's ambition to become a global leader in capital goods and engineering exports.

The corporate finance literature presents traditionally results on long-term financial decisions, including capital structure, investments, dividends and company valuations (García-Teruel and Martínez-Solano, 2007). As emphasized by Gitman (2011), working capital management is a comprehensive strategy encompassing the efficient management of current assets and current liabilities within a firm. Working Capital Management (WCM) refers to the efficient handling of a company's short-term assets and liabilities to ensure smooth operations, financial stability, and profitability. It involves managing cash, accounts receivable, accounts payable, and inventory to maintain liquidity while optimizing operational efficiency. The goal is to balance the firm's current assets and liabilities to avoid liquidity crises while maximizing returns on investment. Working capital management is not just a financial strategy; it is a key driver of corporate sustainability. By optimizing working capital, companies can enhance liquidity, operational efficiency, and resilience while integrating green initiatives and sustainable business practices. Aligning financial management with environmental and social responsibility enables businesses to achieve long-term growth while minimizing their ecological footprint.

The aim of the study is to identify and analysis the working capital policies adopted by selected Indian capital goods and to understand the relationship between the Working Capital policy with the fundamental characteristics of Indian capital goods. This study aims to identify the investment and financing policies commonly followed by the Indian capital goods sector. This study will contribute to existing literature by providing empirical insights into the working capital policies specific to the Indian capital goods sector, an area with limited focused research. It will help bridge the gap in understanding how investment and financing strategies impact financial stability and efficiency in this industry. The findings will be useful for academicians, policymakers, financial analysts, and business managers, assisting them in making informed decisions regarding working capital management and financial planning. The next section presents a review of the relevant literature review, and Theoretical Framework, which briefly justifies the choice of variables used to achieve the study's objectives. Subsequently, the paper discusses research methodology, statistical analysis and interpretation. Finally, the findings and conclusions are presented.

Vol 5 Issue 2 (2025)

Literature review & theoretical framework:

Working capital management (WCM) is a critical aspect of corporate finance, influencing a firm's liquidity, profitability, and overall financial stability. Extensive research has been conducted to explore various dimensions of WCM, particularly its relationship with profitability, trade-offs between liquidity and profitability, and determinants of working capital investment. Studies such as those by Prasad et al. (2018) highlight these key areas, establishing a foundation for understanding working capital policies (WCP). However, limited research has specifically focused on the working capital policies adopted by capital goods manufacturing companies, which this study aims to address.

The theoretical foundation for WCM is based on the trade-off theory, which balances profitability and liquidity, and the pecking order theory, which explains financing preferences. The studies of Deloof (2003) and Lazaridis and Tryfonidis (2006) provide essential insights into WCM's role in profitability, with Deloof focusing on manufacturing firms and Lazaridis and Tryfonidis exploring service industries. The balance between aggressive and conservative WCM strategies is pivotal in determining financial performance. Several studies have examined the relationship between WCM and firm performance. Gitman (2011) emphasized the importance of managing current assets and liabilities efficiently, as these elements dictate working capital investment policies (WCIP) and working capital financing policies (WCFP). Studies by Shin and Soenen (1998) and Maxwell et al. (1998) explored how financial ratios within WCM influence firm profitability and liquidity. The discourse on WCM within the capital goods sector remains limited. Previous research, such as Gupta (1969) and Gupta and Huefner (1972), analyzed financial ratio variations across industries, while Johnson (1970) and Pinches et al. (1973) examined discrepancies in profitability, leverage, and liquidity across sectors. More recent studies by Ali et al. (2024) have focused on SME cross-industry comparisons, emphasizing financial literacy and the role of government policies in enhancing financial management practices. The COVID-19 pandemic has significantly influenced WCM strategies, as highlighted by Zanolla, Pimentel, and Couto (2024). Their study found that firms in different economic sectors exhibited varying sensitivities to WCM changes, with conservative policies benefiting firms during crises. Similarly, Weinraub and Visscher (1998) discussed aggressive versus conservative WCM policies in U.S. firms, finding distinct patterns and stability over time.

Existing literature has adopted various methodologies to assess WCM's impact. Studies such as Lamberson (1995) utilized time-series analysis to evaluate small firms' adaptability to economic changes, whereas Jose et al. (1997) employed the Cash Conversion Cycle (CCC) to establish a negative correlation between aggressive WCM and profitability. Filbeck and Krueger (2005) highlighted temporal variations in working capital practices across U.S. industries, further reinforcing the need for industry-specific analyses.

Despite extensive research on WCM, studies explicitly addressing working capital policies within the capital goods manufacturing sector remain scarce. While existing literature covers financial ratios, profitability analysis, and liquidity concerns, a gap exists in understanding how different WC policies interact with fundamental characteristics of capital goods firms, such as

Journal of Informatics Education and Research ISSN: 1526-4726 Vol 5 Issue 2 (2025)

firm size, growth, and leverage. Studies like Vahid, Mohsen, and Mohammadreza (2012) demonstrate that conservative investment policies and aggressive financing strategies negatively impact profitability, yet more empirical evidence is needed for industry-specific insights.

The two key components of Working Capital Management policy are (1) Working Capital Investment Policy (WCIP) which determines the proportion of current assets (CA) relative to the company's total assets (TA), and to optimize shareholder wealth, the finance manager must ascertain the ideal level of current assets. It is calculated by diving the Current Assets with Total assets and (2) Working Capital Financing Policy (WCFP), focuses on how current assets are funded. Working capital Financing policy is calculated by diving the current liabilities (CL) with total assets (TA).

According to research by Ahmad, M., Bashir, R., & Waqas, H. (2022), at the CA level, there are three possible strategies

Working		
capital		Level of investment in
investment		Current Assets out of Total
policy		Assets
	Companies following an aggressive	
	policy keep current assets at the	
	minimum required for daily	
	operations, focusing on maximizing	
	profitability. It frees up funds for more	
	productive uses, such as long-term	
	investments or debt reduction, but	
	may increase the risk of liquidity	
	problems. Potential for higher	
Aggressive	profitability, but increased	The level of investment in CA
investment	vulnerability to economic fluctuations	out of TA lies between of 5% to
policy	or unexpected events.	35% of the selected firms.
	This policy strikes a balance between	
	liquidity and profitability by	
	maintaining a moderate level of	
	current assets. It allows companies to	
	take advantage of investment	
	opportunities while also having a	
N. 1	sufficient buffer for operational needs.	
Moderate	Offers a balance between liquidity and	Level of investment in CA out
investment	profitability but may not excel in	of TA lies between 35 % to
policy	either aspect.	65% of the selected firms.
C	Companies following a conservative	I 1 - 6 : to to CA
Conservative	policy tend to hold higher levels of	Level of investment in CA out
investment	current assets (cash, receivables, and	of TA is more than 65% above
policy	inventory) than required for	of the selected firms.

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

	rational needs. This es a high level of
liquidity and m	inimizes the risk of
disruptions due t	o unexpected changes
in sales or econo	mic conditions. While
it provides a saf	ety net, it might lead
to lower profital	pility as excess funds
are tied up in lov	y-yielding assets.

XX7 1 •		
Working		
capital		
financing		Level of Current Liabilities to
policy		finance Total Assets
	Companies following an aggressive	
	financing policy rely heavily on short-	
	term debt to finance their working	
	capital needs. It minimizes financing	
	costs but exposes the company to	
	interest rate risk and potential	
	financial instability in a volatile	
	market. Lower financing costs, but	When the use of CL to FA is
Aggressive	higher risk of financial distress in	more than 65% of the selected
financing policy	adverse economic conditions.	firms.
	This policy involves a balanced mix of	
	short-term and long-term financing	
	sources to meet working capital needs.	
	Companies can benefit from flexibility	
	while managing financing costs	
	reasonably effectively. Balances risk	
	and cost, providing a reasonable	When the use of CL to FA lies
Moderate	compromise between stability and	between 35 % to 65% of the
financing policy	flexibility.	selected firms.
	Companies adopting a conservative	
	financing policy rely more on long-	
	term financing sources and less on	
	short-term debt. This approach	
	minimizes the risk of short-term	When the use of CL to FA lies
	financial distress and provides	between the average of 5% to
	stability but may result in higher	35% of the selected firms,
	financing costs. Lower risk of	means firm is using more long-
Conservative	liquidity problems, but higher overall	term funds to finance current
financing policy	financing costs.	assets and fixed assets

Journal of Informatics Education and Research ISSN: 1526-4726 Vol 5 Issue 2 (2025)

An organization must have the ideal balance between immediate and long-term financing. The major issues which need to be considered to achieve the right balance of funds are the cost of finance, the cost of renewing borrowing again and again, flexibility etc. Ultimately, the decision among these policies hinges on factors such as the company's risk tolerance, prevailing industry conditions, and strategic goals. Each approach carries its own array of benefits and drawbacks, prompting companies to adapt their policies over time in response to evolving circumstances. In a dynamic economic landscape, understanding how firms determine their working capital policies is essential for comprehending their financial health and strategic decision-making. The purpose of this study is also to ascertain and evaluate the firm-related variables that are significant in determining these entities' WC policies.

The literature review establishes that WCM plays a crucial role in firm performance, with numerous studies analyzing its relationship with profitability, liquidity, and financial stability. However, there remains a need for focused research on the working capital policies of capital goods manufacturing firms in India. This study aims to bridge this gap by analyzing the WC policies adopted by selected Indian capital goods companies and their relationship with fundamental industry-specific characteristics.

Research methodology:

The study relies on secondary data, which may be subject to reporting biases, and financial ratios could be influenced by external macroeconomic conditions. While efforts have been made to ensure data accuracy, errors in financial reporting may still affect results. Ethical considerations include transparency through the use of publicly available data, ensuring no manipulation or alteration of financial information, and proper citation of sources. This structured methodology ensures the robustness and reliability of the study's findings, contributing valuable insights into the financial stability of Indian manufacturing capital goods companies. This study adopts a quantitative research approach to assess the financial stability and performance of Indian manufacturing capital goods companies using secondary data sources. The dataset, sourced from Moneycontrol as of January 15, 2025, initially included 259 companies. A systematic screening process was implemented to ensure data reliability and completeness. Companies lacking a complete 10-year financial history (2015-2024) were excluded, eliminating 77 companies and reducing the sample size to 182. Secondly, companies with errors in financial ratio calculations were removed, further reducing the sample to 157. The final dataset will be analyzed using descriptive statistics, ratio analysis, correlation analysis, and regression analysis to assess financial stability and performance.

The objectives of this research are:

Objective 1: To identify and analysis the working capital policies adopted by selected Indian capital goods.

- (a) To identify and analysis the WCIP adopted by selected Indian capital goods manufacturing companies.
- (b) To identify and analysis the WCFP adopted by selected Indian capital goods manufacturing companies.

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

Objective 2: To understand the relationship between the WC policy with the fundamental characteristics of Indian capital goods.

- (a) To understand the relationship between the WCIP with the fundamental characteristics of Indian capital goods manufacturing companies
- (b) To understand the relationship between WCFP with the fundamental characteristics of Indian capital goods manufacturing companies

To have a robust understanding about the relationship between WC practices and the fundamental characteristics of Indian capital goods manufacturing companies. Apart from the Working Capital Financing Policy and Working Capital Investment Policy, the following variables are taken into study.

- 1. **Liquidity (Current Ratio CA/CL):** It determines how well a business can fulfil its immediate obligations. This is used as a stand-in for liquidity, where a greater current ratio denotes a better position for liquidity. Strong liquidity positions enable businesses to manage working capital more effectively and handle day-to-day operations more easily.
- 2. **Profitability (Return on Total Assets EBIT/TA):** provides insights into a firm's profitability relative to its asset base. As a proxy for profitability, this ratio reflects how effectively the firm generates earnings from its total assets. A higher ROA suggests efficient asset utilization, positively impacting working capital by potentially providing more internal funds for operations.
- 3. **Leverage (Debt/Total Assets):** it, represented by Debt to Total Assets (Debt/TA), indicates the proportion of a company's assets that are loaned money. This ratio shows how much financial leverage the company is using. A higher leverage implies greater reliance on debt financing, influencing working capital by affecting interest expenses and the overall financial risk of the firm.
- 4. **Debt Service Coverage Ratio (DSCR):** evaluates the ability of a business to pay down its debt. Earnings Before Interest and Taxes (EBIT) and non-operating income and expenses are included in the computation of Net Operating Income / Total Debt Service. A higher DSCR indicates a healthier capacity to meet debt obligations, positively impacting WC stability by reducing financial strain and enhancing creditworthiness.

These financial ratios offer a broad picture of a business's financial situation and can be used to inform choices about financing options, investments, and working capital management. A comprehensive knowledge of a company's working capital dynamics is facilitated by the unique roles that each of the aforementioned ratios plays in evaluating various aspects of its operations and financial structure.

Statistical analysis and interpretation:

Objective 1: To identify and analysis the working capital policies adopted by selected Indian capital goods.

- (a) To identify and analysis the WCIP adopted by selected Indian capital goods manufacturing companies.
- (b) To identify and analysis the WCFP adopted by selected Indian capital goods manufacturing companies.

To analysis the type of WCIP & WCFP the selected firm, formula used are:

- Working capital investment policy (WCIP) = CA/TA and
- Working capital financing policy or approach (WCFP) = CL/TA

Using the formulas discussed earlier, the working capital investment policy and working capital financing policy were calculated for all selected companies. These policies were then classified based on the framework used by Ahmad, M., Bashir, R., & Waqas, H. (2022) in their study, allowing for a structured identification of working capital strategies across the companies analyzed. The analysis of 157 Indian capital goods manufacturing companies reveals distinct preferences in working capital policies.

Table 1: Table showing the classification of firms based on the type of Working Capital policy they follow

PARTICULARS (different combination of W		
policy)	No. of companies	Rank
Aggressive IP +Aggressive FP	4	8
Aggressive IP + Moderate FP	1	9
Aggressive IP + Conservative FP	10	5
Moderate IP + Moderate FP	31	3
Moderate IP + Aggressive FP	5	7
Moderate IP + Conservative FP	33	2
Conservative IP + Conservative FP	18	4
Conservative IP + Aggressive FP	9	6
Conservative IP + Moderate FP	46	1
TOTAL NO. OF COMPANIES	157	

The Conservative Investment Policy (IP) + Moderate Financing Policy (FP) is the most widely adopted, with 46 companies (rank 1) following this approach. This indicates that a majority of firms prefer maintaining a higher level of current assets to ensure liquidity and operational stability while financing them through a balanced mix of short-term and long-term sources. This strategy reduces financial risk and enhances resilience against market uncertainties.

The Moderate IP + Conservative FP (33 companies, rank 2) and Moderate IP + Moderate FP (31 companies, rank 3) policies are also prevalent. This suggests that firms favor a moderate stance, balancing liquidity with profitability by investing in current assets while relying more on long-

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

term financing. The presence of a substantial number of firms following conservative and moderate policies highlights a preference for financial stability over aggressive expansion.

Conversely, aggressive working capital policies are the least preferred. The Aggressive IP + Moderate FP (1 company, rank 9) and Aggressive IP + Aggressive FP (4 companies, rank 8) policies are rarely adopted. This indicates that very few firms take high risks by maintaining low current assets or relying heavily on short-term liabilities. Such policies, while potentially increasing returns, expose companies to liquidity risks and financial distress.

The significance of these findings lies in their implications for financial stability, risk management, and strategic decision-making in the Indian capital goods sector. The dominance of conservative and moderate working capital policies suggests that firms prioritize liquidity and financial security over aggressive expansion, ensuring resilience against market fluctuations. This trend highlights the industry's cautious approach to risk, where firms prefer maintaining sufficient current assets and relying on stable financing sources to sustain operations. Additionally, the low adoption of aggressive policies indicates potential constraints in short-term financing or a strategic preference for long-term financial stability. These insights are crucial for financial managers, investors, and policymakers in designing effective working capital strategies that balance profitability with risk mitigation.

Objective 2: To understand the relationship between the Working Capital policy with the fundamental characteristics of Indian capital goods.

(a) To understand the relationship between the Working Capital Investing Policy with the fundamental characteristics of Indian capital goods manufacturing companies

H0a: There is no significant relationship between the Working Capital Investing Policy and the fundamental characteristics of Indian capital goods manufacturing companies.

H1a: There is a significant relationship between the Working Capital Investing Policy and the fundamental characteristics of Indian capital goods manufacturing companies.

(b) To understand the relationship between Working Capital Financing Policy with the fundamental characteristics of Indian capital goods manufacturing companies

H0b: There is no significant relationship between the Working Capital Financing Policy and the fundamental characteristics of Indian capital goods manufacturing companies.

H1b: There is a significant relationship between the Working Capital Financing Policy and the fundamental characteristics of Indian capital goods manufacturing companies.

Correlation and regression analysis help in understanding the relationship between working capital policy and the fundamental characteristics of Indian capital goods manufacturing companies.

(A) The correlation analysis to examine of the associations between the fundamental characteristics (Liquidity, Profitability, Leverage, Debt Service Coverage Ratio - DSCR) of http://jier.org

Indian capital goods manufacturing companies and their respective Working Capital Investing Policy:

Table 2: Table showing correlation analysis between fundamental characteristics and Working Capital Investing Policy

	WCID	Liquidity (Current	Profitability (Return on	WCED		DSCR(Debt Service Coverage
IVCID	WCIP	Ratio)	Total Assets)	WCFP	Leverage	Ratio)
WCIP	1					
Liquidity						
(Current	-					
Ratio)	0.098643517	1				
Profitability						
(Return on						
Total						
Assets)	0.113170827	0.100796462	1			
	-	-	-			
WCFP	0.004261536	0.228049236	0.469327477	1		
	-		-			
Leverage	0.186120211	-0.0230635	0.143511665	0.760457844	1	
DSCR(Debt						
Service						
Coverage				_	_	
Ratio)	0.052012973	0.108406267	0.282421733	0.233038141	0.040834419	1

The correlation analysis examines the relationship between Working Capital Investing Policy and key financial characteristics of Indian capital goods manufacturing companies.

The negative correlation between Working Capital Investing Policy and liquidity (-0.0986) suggests that firms with a higher reliance on current liabilities for financing tend to have slightly lower current ratios. This implies that increased dependence on short-term financing does not necessarily enhance liquidity, potentially leading to increased short-term financial risks.

A positive correlation between Working Capital Investing Policy and profitability (0.1131) indicates that firms with higher reliance on current liabilities tend to achieve slightly better returns on total assets. This suggests that companies using more short-term financing may benefit from lower financing costs, improving overall profitability. However, the weak correlation indicates that this relationship is not strong.

The insignificant correlation between Working Capital Investing Policy and Working Capital Financing Policy (-0.0042) implies that firms do not necessarily align their working capital financing approach with their investment policy. This suggests independent decision-making in managing working capital assets and liabilities.

A negative correlation between Working Capital Investing Policy and leverage (-0.1861) indicates that companies relying more on short-term financing tend to have lower overall debt levels. This suggests that firms with conservative financing policies may avoid excessive leverage and focus on maintaining financial stability.

Lastly, the positive but weak correlation between Working Capital Investing Policy and DSCR (0.0520) suggests that an increase in short-term financing has a minimal impact on debt servicing capacity. This indicates that firms using more current liabilities do not significantly improve or deteriorate their ability to cover debt obligations.

The findings highlight the impact of working capital financing decisions on financial health and risk exposure. The negative correlation with liquidity suggests that over-reliance on short-term financing may lead to financial strain, while the positive correlation with profitability indicates potential benefits from cost-effective short-term funding. However, the weak relationship suggests that other factors significantly influence profitability. The negative correlation with leverage indicates that firms using more short-term financing tend to have lower long-term debt, highlighting a preference for flexible financing structures. Additionally, the weak correlation with DSCR suggests that short-term financing does not significantly impact debt repayment capacity, reinforcing the need for balanced financial planning. Overall, these insights emphasize the importance of optimizing financing strategies to enhance profitability while managing liquidity risks and maintaining financial stability. Firms should carefully balance short-term and long-term financing to sustain growth and operational efficiency.

(B) This analysis provides insights into the relationship between Working Capital Financing Policy and fundamental financial characteristics of Indian capital goods manufacturing companies.

Table 3: Table showing correlation analysis between fundamental characteristics and Working Capital Financing Policy

		Liquidity (Current	Profitabilit y (Return on Total		Leverage(DEB T TO TOTAL	DSCR(De bt Service Coverage
	WCFP	Ratio)	Assets)	WCIP	ASSETS)	Ratio)
WCFP	1					
Liquidity						
(Current						
Ratio)	-0.22805	1				
Profitability						
(Return on		0.10079				
Total Assets)	-0.46933	6	1			
WCIP	-0.00426	-0.09864	0.113171	1		
Leverage(DEB						
T TO TOTAL						
ASSETS)	0.760458	-0.02306	-0.14351	-0.18612	1	

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

DSCR(Debt							
Service							
Coverage		0.10840		0.05201			
Ratio)	-0.23304	6	0.282422	3	-0.04083	1	

The negative correlation between Working Capital Financing Policy and liquidity (-0.2280) suggests that firms with a higher proportion of current assets relative to total assets tend to have lower current ratios. This could indicate inefficiencies in working capital management, where excess investment in current assets does not necessarily translate into higher liquidity.

A negative correlation between Working Capital Financing Policy and profitability (-0.4693) signifies that companies with a higher proportion of current assets tend to have lower returns on total assets. This may be due to excessive working capital investment reducing the efficiency of asset utilization, leading to diminished profitability.

The insignificant correlation between Working Capital Financing Policy and Working Capital Investing Policy (-0.0042) suggests that investment and financing policies operate independently, implying that firms do not necessarily align their working capital investment policies with specific financing strategies.

A strong positive correlation between Working Capital Financing Policy and leverage (0.7605) indicates that firms with higher working capital investment rely more on debt financing. This suggests that companies with conservative working capital policies may use higher leverage to finance their asset base, potentially increasing financial risk.

Lastly, the negative correlation between Working Capital Financing Policy and DSCR (-0.2330) suggests that firms with higher working capital investment have lower debt servicing capacity. This could indicate that excessive investment in current assets reduces cash flow availability for debt repayment, posing potential liquidity risks. these findings highlight the trade-offs associated with different working capital investment strategies, emphasizing the need for a balanced approach that optimizes liquidity, profitability, and financial stability.

Overall, these insights highlight the importance of strategic working capital management, where firms must carefully assess their investment policies to optimize profitability, maintain liquidity, and manage financial risk. The findings can guide financial managers and policymakers in formulating effective strategies that align with a firm's long-term financial stability and operational efficiency.

The correlation analysis for both Working Capital Investment Policy and Working Capital Financing Policy reveal varying degrees of association with fundamental financial characteristics. While some correlations are statistically significant, most exhibit weak to moderate associations. The null hypotheses (H0a and H0b) assumed no significant relationship between working capital policies and fundamental characteristics. However, the correlation findings indicate the presence of notable associations, particularly between Working Capital Financing Policy and profitability, leverage, and liquidity, as well as between Working Capital Investing Policy and profitability and leverage.

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

It is appropriate to reject both null hypotheses, confirming that working capital policies are significantly linked to the financial structure and performance of Indian capital goods manufacturing companies. These insights emphasize the importance of strategic financial management, as working capital decisions directly influence liquidity, profitability, and financial risk.

These highlight the necessity of considering key financial indicators when formulating working capital strategies, providing a deeper understanding of the intricate relationships between a firm's financial fundamentals and its working capital management practices.

Regression analysis:

As the study aims to analyze the relationship between the Working Capital Policy and the fundamental characteristics of Indian capital goods manufacturing companies. Regression analysis further quantifies this relationship by determining how changes in firm characteristics influence Working Capital Investing Policy and Working Capital Financing Policy. Multiple regression assesses the individual and collective impact of these variables, with statistical significance measured through p-values, R-squared values, and beta coefficients. If significant, the null hypotheses are rejected, confirming a relationship. Otherwise, the findings suggest that working capital policies are not strongly influenced by these factors. A multiple regression analysis was conducted using financial indicators as independent variables.

(A) The relationship between the Working Capital Investing Policy and fundamental characteristics of Indian capital goods manufacturing companies:

Table 4: Table showing the regression to understand the relationship between the Working Capital Investing Policy and fundamental characteristics of Indian capital goods manufacturing companies:

Regression Statistics					
Multiple R	0.38499944 2				
R Square	0.14822457				
Adjusted R Square	0.12002008 6				
Standard Error	0.15742526 9				
Observations	157				

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

ANOVA

	df	SS	MS		Significa nce F
Regression	5	0.65120979 6	0.130242	5.25535 5	0.000177
Residual	151	3.74219000 2	0.024783		
Total	156	4.39339979 7			

	Coefficients	Standard Error	t Stat			11	Lower 95.0%	Upper 95.0%
Intercept	0.46261517	0.03927635 3		3.99E- 23		0.54021 7	0.385013	0.540217
Liquidity (Current Ratio)	- 0.00040540 3	0.00256334 8	-0.15815	0.87454 7	-0.00547	0.00465 9		0.004659
Profitability (Return on Total Assets)		0.12575990 3	3.095436	0.00234 3	0.140805	0.63775 8	0.140805	0.637758
WCIP	0.31418108 8	0.07760269 8	4.048585	8.21E- 05	0.160854	0.46750 8	0.160854	0.467508
		0.01612317 2	-4.63	7.83E- 06	-0.10651	- 0.04279	-0.10651	-0.04279
DSCR (Debt Service Coverage Ratio)	0.00027754 5	0.0002488	1.115536	0.26639	-0.00021	0.00076 9		0.000769

The R-Square value of 0.1482 indicates that approximately 14.82% of the variability in the dependent variable is explained by the independent variables. The Adjusted R-Square value of 0.1200 accounts for the number of predictors and suggests that the model has relatively low explanatory power. However, the F-statistic (5.255) and its associated p-value (0.000177) indicate that the overall regression model is statistically significant, implying that at least one predictor has a meaningful relationship with the dependent variable.

- Working Capital Investing Policy (β = 0.3141, p-value = 8.21E-05): This variable has a statistically significant positive relationship with the dependent variable. Since the p-value is well below the 5% threshold, we conclude that WCIP significantly influences financial characteristics.
- Profitability (Return on Total Assets) ($\beta = 0.3892$, p-value = 0.0023): A significant positive impact is observed, indicating that more profitable firms tend to have better financial stability.
- Leverage (Debt to Total Assets) (β = -0.0746, p-value = 7.83E-06): This coefficient is negative and statistically significant, suggesting that higher leverage adversely affects financial stability.
- Liquidity (Current Ratio) ($\beta = -0.0004$, p-value = 0.8745): The relationship is statistically insignificant, meaning liquidity does not significantly impact the dependent variable.
- Debt Service Coverage Ratio (DSCR) (β = 0.0002, p-value = 0.2663): This variable also does not have a statistically significant impact.

Hypothesis Testing:

The p-value for Working Capital Investing Policy (8.21E-05) is significantly lower than 0.05, leading us to reject H₀ and accept H₁. This confirms that WCIP has a statistically significant relationship with the fundamental characteristics of Indian capital goods manufacturing companies.

The regression analysis provides meaningful insights into the factors affecting financial stability. The significant role of Working Capital Investing Policy, profitability, and leverage suggests that firms should strategically manage their working capital policies and capital structures to enhance financial performance. However, liquidity and DSCR do not exhibit a significant impact, indicating that other external factors might influence financial stability beyond these variables.

(B) The relationship between Working Capital Financing Policy and fundamental characteristics of Indian capital goods manufacturing companies:

Regression Statistics

Vol 5 Issue 2 (2025)

Table 5:Table showing the regression to understand the relationship between the Working Capital Financing Policy and fundamental characteristics of Indian capital goods manufacturing companies

Regression Statistics

Multiple R	0.879896844
R Square	0.774218456
Adjusted R Square	0.766742246
Standard Error	0.156794753
Observations	157

ANOVA

	df	SS	MS	F	Significance F
Regression	5	12.72960944	2.545922	103.5576	5.54E-47
Residual	151	3.71227377	0.024585		
Total	156	16.44188321			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	11		Upper 95.0%
Intercept	0.276457981	0.049296249	5.608094	9.49E-08	0.179059	0.373857	0.179059	0.373857
Liquidity (Current Ratio)	- 0.009328286	0.002437833	-3.82647	0.00019	-0.01414	-0.00451	-0.01414	-0.00451
Profitability (Return on Total Assets)	- 0.886591736	0.107140461	-8.27504	6.26E-14	-1.09828	-0.6749	-1.09828	-0.6749
WCFP	0.311669427	0.076982317	4.048585	8.21E-05	0.159568	0.463771	0.159568	0.463771

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

Leverage(DEBT TO TOTAL ASSETS)		0.009494169	18.50198	1.18E-40	0.156902	0.194419	0.156902	0.194419
DSCR(Debt Service Coverage Ratio)	- 0.000599351	0.000243995	-2.4564	0.015167	-0.00108	-0.00012	-0.00108	-0.00012

The R-Square value of 0.7742 indicates that approximately 77.42% of the variability in the dependent variable is explained by the independent variables. The Adjusted R-Square value of 0.7667 accounts for the number of predictors and suggests that the model has strong explanatory power. The F-statistic (103.56) and its associated p-value (5.54E-47) indicate that the overall regression model is statistically significant, implying that at least one predictor has a meaningful relationship with the dependent variable.

- Working Capital Financing Policy ($\beta = 0.3117$, p-value = 8.21E-05): This variable has a statistically significant positive relationship with the dependent variable. Since the p-value is well below the 5% threshold, we conclude that WCFP significantly influences financial characteristics.
- Profitability (Return on Total Assets) (β = -0.8866, p-value = 6.26E-14): A significant negative impact is observed, indicating that more profitable firms tend to have a different financial strategy regarding Working Capital Financing Policy.
- Leverage (Debt to Total Assets) ($\beta = 0.1757$, p-value = 1.18E-40): This coefficient is positive and statistically significant, suggesting that higher leverage plays a critical role in determining financial stability.
- Liquidity (Current Ratio) (β = -0.0093, p-value = 0.00019): The relationship is statistically significant but negative, meaning liquidity impacts the dependent variable in an inverse manner.
- Debt Service Coverage Ratio (DSCR) (β = -0.0006, p-value = 0.0152): This variable has a statistically significant but negative impact, implying that DSCR influences financial stability.

Hypothesis Testing

Decision: The p-value for WCFP (8.21E-05) is significantly lower than 0.05, leading us to reject H₀ and accept H₁. This confirms that Working Capital Financing Policy has a statistically significant relationship with the fundamental characteristics of Indian capital goods manufacturing companies. The regression analysis provides meaningful insights into the factors affecting financial stability. The significant role of Working Capital Financing Policy, profitability, leverage, and liquidity suggests that firms should strategically manage their financing policies and capital structures to enhance financial performance. However, the negative impact of DSCR highlights the need for further investigation into debt servicing capabilities and their role in financial stability.

Finding & conclusion:

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

The study on working capital policies in Indian capital goods manufacturing companies highlights significant patterns in investment and financing strategies. The key findings from the research are as follows:

1. Predominance of Conservative and Moderate Working Capital Policies: The most widely adopted working capital strategy is the Conservative Investment Policy + Moderate Financing Policy, with 46 companies ranking it as their preferred approach. This emphasizes a strong inclination towards maintaining liquidity and operational stability. The Moderate IP + Conservative FP (33 companies) and Moderate IP + Moderate FP (31 companies) also find widespread acceptance, demonstrating a balanced approach to financial risk and profitability. Conversely, Aggressive working capital policies remain the least preferred, with only a few companies (ranked 8th and 9th) adopting Aggressive IP + Moderate FP or Aggressive IP + Aggressive FP, underscoring the aversion to high financial risk.

2. Relationship Between Working Capital Policies and Fundamental Characteristics:

• Working Capital Investment Policy (WCIP):

Negatively correlated with **liquidity** (-0.0986), indicating that a higher reliance on current liabilities does not necessarily improve short-term liquidity. Positively correlated with **profitability** (0.1131), albeit weakly, suggesting that firms using short-term financing may see slight profitability gains due to lower financing costs.Negatively correlated with **leverage** (-0.1861), implying that firms with conservative financing policies tend to maintain lower overall debt levels. Weak correlation with **DSCR** (0.0520), indicating that working capital investment does not significantly impact debt repayment capacity.

• Working Capital Financing Policy (WCFP):

Negatively correlated with **liquidity** (-0.2280), highlighting inefficiencies in working capital management where increased current asset investment does not enhance liquidity. Negatively correlated with **profitability** (-0.4693), indicating that excessive working capital investment might reduce asset utilization efficiency, negatively impacting profitability. Positively correlated with **leverage** (0.7605), showing that firms with higher working capital investments tend to rely more on debt financing. Negatively correlated with **DSCR** (-0.2330), implying that excessive investment in current assets may reduce firms' ability to service debt obligations.

The correlation and regression analyses confirm a statistically significant relationship between working capital policies and fundamental financial characteristics, leading to the **rejection of both null hypotheses (H0a and H0b)**. This study provides a comprehensive assessment of working capital management strategies in Indian capital goods manufacturing companies. The findings reveal that firms predominantly adopt **conservative and moderate working capital policies** to maintain financial stability, liquidity, and operational efficiency while minimizing financial risk. Aggressive policies remain largely unpopular due to their inherent risks and potential for liquidity crises.

The correlation and regression analyses establish a **significant relationship between working capital policies and fundamental financial characteristics**, affirming those decisions regarding investment and financing strategies influence liquidity, profitability, leverage, and debt service http://jier.org 6324

Journal of Informatics Education and Research ISSN: 1526-4726 Vol 5 Issue 2 (2025)

capabilities. The study highlights key managerial implications, emphasizing that the Firms should strike a balance between liquidity and profitability to optimize financial performance. Over-reliance on short-term financing can introduce financial strain, requiring firms to assess their debt management strategies. Financial managers must tailor working capital policies to align with firm-specific risk tolerance and long-term financial goals.

The study's findings are particularly relevant to the sustainability of Indian capital goods companies, as efficient working capital management ensures long-term financial resilience and operational stability. By maintaining a balanced approach, firms can reduce dependency on high-cost financing, improve cash flow management, and enhance their ability to withstand market fluctuations. A well-structured working capital strategy not only supports financial stability but also enhances competitiveness by enabling firms to reinvest in innovation and growth. Moreover, conservative financing policies reduce exposure to financial distress, fostering investor confidence and sustainable risk management. In alignment with global trends, firms adopting responsible working capital management practices will also improve their ESG compliance, positioning themselves favorably in the evolving regulatory and investor landscape. Ultimately, this study provides a strategic roadmap for industry stakeholders, guiding them toward financial efficiency while ensuring sustainable growth in India's capital goods sector. Further research could explore additional financial and macroeconomic indicators to enhance the model's explanatory power. Moreover, a sectoral analysis could provide deeper insights into the impact of WCFP across different industries.

References:

- 1. Afza, T., & Nazir, S. M. (2007). Is it better to be aggressive or conservative in managing working capital? Journal of Quality and Technology Management, 3(2), 11-21.
- 2. Ahmad, M., Bashir, R., & Waqas, H. (2022). Working capital management and firm performance: Are their effects the same in COVID-19 compared to the financial crisis 2008? Cogent Economics & Finance, 10(1), 2101224. https://doi.org/10.1080/23322039.2022.2101224
- 3. Ali, A., Khan, R., & Hassan, M. (2024). Enhancing financial literacy among SME managers: The role of targeted training and financial management techniques. Journal of Business Finance & Accounting, 51(2), 245-267.
- 4. Ali, M. H., Breesam, H. M., Rashed, Y. A., Qusai, N., Flayyih, M. R., & Naser, S. J. Descriptive study on financial management practices, features, and profitability of small and medium enterprises.
- 5. Al-Shubiri, F. (2010). Analysis of the relationship between working capital policy and operating risk: An empirical study on Jordanian industrial companies. Investment Management & Financial Innovations, 7, 49-58.
- 6. Deloof, M. (2003). Does working capital management affect profitability of Belgian firms? Journal of Business Finance & Accounting, 30(3-4), 573–588. https://doi.org/10.1111/1468-5957.00008
- 7. Farhan, N. H. S., Almaqtari, F. A., Al-Matari, E. M., Senan, N. A. M., Alahdal, W. M., & Hazaea, S. A. (2021). Working capital management policies in Indian listed firms: A statewise analysis. Sustainability, 13(8), 4516. https://doi.org/10.3390/su13084516

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

- 8. Filbeck, G., & Krueger, T. (2005). An analysis of working capital management results across industries. Mid-American Journal of Business, 20(2), 11-20.
- 9. Gardner, M. J., Mills, D. L., & Pope, R. A. (1986). Working capital policy and operating risk: An empirical analysis. The Financial Review, 21(3), 31-31.
- 10. Gitman, L. J. (2011). Principles of managerial finance (13th ed.). Pearson.
- 11. Gitman, L. J., Joehnk, M. D., Smart, S., & Juchau, R. H. (2015). Fundamentals of investing. Pearson Higher Education AU.
- 12. Gombola, M. J., & Ketz, J. E. (1983). A note on cash flow and classification patterns of financial ratios. The Accounting Review, 58(1), 105–114. http://www.jstor.org/stable/246645
- 13. Gupta, M. C. (1969). The effect of size, growth, and industry on the financial structure of manufacturing companies. The Journal of Finance, 24(3), 517-529.
- 14. Gupta, M. C., & Huefner, R. J. (1972). A cluster analysis study of financial ratios and industry characteristics. Journal of Accounting Research, 10(1), 77-95.
- 15. Indian Brand Equity Foundation (IBEF). (n.d.). Engineering industry in India. Retrieved from https://www.ibef.org/industry/engineering-india
- 16. Johnson, C. G. (1970). Ratio analysis and the prediction of firm failure. Journal of Finance, 25(5), 1166-1168.
- 17. José, J., Hernanz, M., & Coc, A. (1997). New results on 26Al production in classical novae. The Astrophysical Journal, 479(1), L55.
- 18. Juan García-Teruel, P., & Martínez-Solano, P. (2007). Effects of working capital management on SME profitability. International Journal of Managerial Finance, 3(2), 164–177. https://doi.org/10.1108/17439130710738718
- 19. Kaur, J. (2010). Working capital management in the Indian tyre industry. Finance India, 46, 7-15.
- 20. Lamberson, M. (1995). Changes in working capital of small firms in relation to changes in economic activity. American Journal of Business, 10(2), 45-50.
- 21. Lazaridis, I., & Tryfonidis, D. (2006). Relationship between working capital management and profitability of listed companies in the Athens stock exchange. Journal of Financial Management and Analysis, 19(1).
- 22. Long, M., Malitz, I., & Ravid, S. A. (1993). Trade credit, quality guarantees, and product marketability. Financial Management, 22, 117-127.
- 23. Maxwell, C. E., Gitman, L. J., & Smith, S. (1998). Working capital management and financial-service consumption preferences of US and foreign firms: A comparison of 1979 and 1996 preferences. Financial Practice and Education, 8(2), 46-52.
- 24. Nazir, M., & Afza, T. (2009). Impact of aggressive working capital management policy on firms' profitability. The IUP Journal of Applied Finance, 25(8), 19-30.
- 25. Pandey, I. M., & Parera, K. L. W. (1997). Determinants of effective working capital management: A discriminant analysis approach. IIMA Working Paper #1349, Research and Publication Department, Indian Institute of Management Ahmedabad.
- 26. Pinches, G. E., Eubank, A. A., Mingo, K. A., & Caruthers, J. K. (1975). The hierarchical classification of financial ratios. Journal of Business Research, 3(4), 295-310. https://doi.org/10.1016/0148-2963(75)90011-9

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

- 27. Prasad, P., Narayanasamy, S., Paul, S., Chattopadhyay, S., & Saravanan, P. (2018). Review of literature on working capital management and future research agenda. Journal of Economic Surveys. https://doi.org/10.1111/joes.12299
- 28. Prasad, R. S. (2001). Working capital management in the paper industry. Finance India, 15(1), 185-188.
- 29. Reyad, H. M., Zariyawati, M. A., Ong, T. S., & Muhamad, H. (2022). The impact of macroeconomic risk factors, the adoption of financial derivatives on working capital management, and firm performance. Sustainability, 14(21), 14447. https://doi.org/10.3390/su142114447
- 30. Rezazadeh Sefideh, S., & Asgari, M. R. (2016). The impact of working capital policy on risk management in companies listed on the Tehran Stock Exchange. Problems and Perspectives in Management, 14(3-si), 364-371. doi:10.21511/ppm.14(3-si).2016.09
- 31. Salawu, R. O. (2007). Capital industry practice and aggressive conservative working capital policies in Nigeria. Global Journal of Business Research, 1(2), 109-118.
- 32. Sathyamoorthi, C. R. (2002). Management of working capital in selected co-operatives in Botswana. Finance India, 16(3), 1015-1034.
- 33. Shin, H. H., & Soenen, L. (1998). Efficiency of working capital management and corporate profitability. Financial Practice and Education, 8(2), 37-45.
- 34. Thenuwara, M. G. S., & Ekanayake, N. P. K. (2021). The impact of working capital management on profitability: Evidence from listed companies in Sri Lankan consumer staples sector. Journal of Business and Technology, 5(0), 104-120. https://doi.org/10.4038/jbt.v5i0.56
- 35. Weinraub, H. J., & Visscher, S. (1998). Industry practice relating to aggressive conservative working capital policies. Journal of Financial and Strategic Decision, 11(2), 11-18.

ANNEXURES:

1. Table showing the names of companies following the different possible combination of working capital investing and working capital financing policy:

	PARTICULARS		TOTAL NO. OF COMPANIES
A	Aggressive Investment Policy +Aggressive Financing Policy		
	1	Kirl Electric	
	2	Alliance Integ	
	3	TIHIL	
	4	Premier	4

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

В	Aggressive Investment Policy + Moderate Financing Policy		
	1	Axiscades Tech	1

С	Aggressive Investment Policy + Conservative Financing Policy		
	1	NESCO	10
	2	Windsor	
	3	Elpro Int	
	4	Hercules Hoists	
	5	Emkay Taps	
	6	Majestic Auto	
	7	Batliboi	
	8	ATV Projects	
	9	Alfred Herbert	
	10	United Van Hors	

D	Moderate Investment Policy + Moderate Financing Policy	31
	1	CG Power
	2	BHEL
	3	Thermax
	4	Action Const
	5	Kirloskar Bros
	6	Elecon Eng
	7	WPIL
	8	Pitti Engineeri
	9	Bharat Bijlee
	10	HLE Glascoat
	11	Roto Pumps
	12	Everest Kanto
	13	Walchandnagar
	14	RMC Switchgears
	15	Lokesh Machines
	16	Triton Valves
	17	Intl Conveyor

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

18	Forbes Gokak
19	Pradeep Metals
20	Bemco Hydraulic
21	GEE
22	GTV Engineering
23	Cenlub
24	Paramone
25	Calcom Vision
26	Duncan Eng
27	Rishi Laser
28	Delta
29	Alfa Transforme
30	Artefact
31	Polymechplast

E	Moderate Investment Policy + Aggressive Financing Policy		5
Ľ	r mancing r oncy		3
	1	Suzlon Energy	
	2	MIC Electronics	
	3	TIL	
	4	Dynavision	
	5	Aplab	

	Moderate Investment Policy + Conservative	
F	Financing Policy	33
	1	Havells India
	2	Elgi Equipments
	3	Kirloskar Oil
	4	Tega Industries
	5	HEG
	6	Greaves Cotton
	7	TD Power System
	8	GMM Pfaudler
	9	Dynamatic Tech
	10	Shivalik Bimeta
	11	Raghav Product
	12	Igarashi Motors
	13	Ador Welding
	14	Kabra Extrusion

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

15	IFGL Refractory
16	Rishabh Instru
17	Eimco Elecon
18	ORIENT CERATECH
19	United Drilling
20	Modison
21	Alphageo
22	Lakshmi Elec
23	Veto Switch
24	Nitiraj Enginee
25	RTS Power Corp
26	Rishiroop
27	Shilp Gravures
28	Rexnord Electro
29	SEMAC CONSULT
30	Manugraph Ind
31	Advance Meter
32	Solitaire Mach
33	Tarini Int

G	Conservative Investment Policy + Conservative Financing Policy	18
U	1	L&T Technology
	2	AIA Engineering
	3	V-Guard Ind
	4	Ingersoll Rand
	5	RHI Magnesita
	6	Graphite India
	7	Kirloskar Pneum
	8	Honda India PP
	9	Divgi Torqtrans
	10	Mazda
	11	Veljan Denison
	12	Gujarat Apollo
	13	Mahindra EPC
	14	Star Delta Tran
	15	DHP
	16	Rungta Irrig

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

17	Rasi Electrodes	
18	Rapicut Carbide	

Н	Conservative Investment Policy + Aggressive Financing Policy	9
	1	GE Vernova T&D
	2	Apar Ind
	3	KEC Intl
	4	Schneider Infra
	5	TRF
	6	Jyoti
	7	Storage Technol
	8	Refractory Shap
	9	Tarapur Trans

I	Conservative Investment Policy + Moderate Financing Policy		
	1	Inox Wind	46
	2	BEML	
	3	Transformers	
	4	Praj Industries	
	5	Shakti Pumps	
	6	Genus Power	
	7	Engineers India	
	8	Lloyds Engineer	
	9	Ion Exchange	
	10	ISGEC Heavy Eng	
	11	Shilchar Techno	
	12	Skipper	
	13	Servotech Renew	
	14	HPL Electric &	
	15	Rajoo Engineers	
	16	Disa India	
	17	Salasar Techno	
	18	Hind Rectifiers	
	19	Kilburn Engg	
	20	John Cockerill	

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

21	That Ever
21	Thejo Engg
22	Bajaj Steel
23	Yuken India
24	Permanent Magne
25	Axtel Ind
26	Focus Lighting
27	Affordable Robo
28	Josts Engineers
29	Innovators Faca
30	Birla Precision
31	Patels Airtemp
32	Taylormade Rene
33	Brady and Morri
34	KPT Industries
35	Dhruv Consultan
36	Loyal Equip
37	D & H India
38	Precision Elec
39	Akar Auto Indus
40	ITL Industries
41	Rolcon Engg
42	TandI Global
43	Sharika Enter
44	Cranex
45	Hawa Engineers
46	Adarsh Plant

	15
TOTAL NO. OF COMPANIES	7

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

2. Table showing the computation of Working capital investment policy or approach (CA/TA) and Working capital financing policy or approach (CL/TA) of all the selected companies. And there respective fundamental characteristics:

		Objecti ve 3(a)	Object ive 3(a)	Objectiv e 3(a)	Object ive 3(a)	Objective 3(a)	Objectiv e 3(a)	Objecti ve 3(b)	Object ive 3(b)	Objectiv e 3(b)	Object ive 3(b)	Object ive 3(b)	Objectiv e 3(b)
		Depend ent Variabl es		Inde	pendent	Variables		Depend ent Variabl es		Indepe	ndent Va	riables	
	PARTICU LAR	WCFP	Liquid ity (Curre nt Ratio)	Profitabi lity (Return on Total Assets)	WCIP	Leverage(D EBT TO TOTAL ASSETS)	DSCR(Debt Service Coverag e Ratio)	WCIP	Liquid ity (Curre nt Ratio)	Profitabi lity (Return on Total Assets)	WCFP	Levera ge	DSCR(Debt Service Coverag e Ratio)
	Havells	0.33570	1.6993	0.14092	0.5687		14.4010	0.56876	1.6993	0.14092	0.3357	0.0548	14.4010
1	India	9	28	4	69	0.054841	5	9	28	4	09	41	5
2	CG Power	0.45064	1.4663	0.05349	0.5698 79	0.106346	4.14576	0.56987	1.4663	0.05349	0.4506 45	0.1063 46	4.14576
	Suzlon	0.81881	0.7717	3	0.4752	0.100540	_	0.47525	0.7717	3	0.8188	0.4958	
3	Energy	5	6	-0.1026	55	0.495815	0.22058	5	6	-0.1026	15	15	0.22058
		0.36106	1.6899	0.00198	0.6001		0.04616		1.6899	0.00198	0.3610	0.1561	0.04616
4	BHEL	8	94	1	9	0.156168	2	0.60019	94	1	68	68	2
5	L&T Technology	0.26801	2.6872 25	0.22617 7	0.6873 47	0.047658	132.139 6	0.68734	2.6872 25	0.22617 7	0.2680	0.0476 58	132.139 6
6	Thermax	0.46503	1.3489	0.06385	0.6254 82	0.014031	4.89000	0.62548	1.3489	0.06385	0.4650 39	0.0140	4.89000 4

Vol 5 Issue 2 (2025)

	GE												
	Vernova	0.68708	1.1117	0.00927	0.7618		0.83907		1.1117	0.00927	0.6870	0.0346	0.83907
7	T&D	6	68	2	7	0.034663	7	0.76187	68	2	86	63	7
	AIA												
	Engineerin	0.09819	8.3992	0.19193	0.7366		58.1390	0.73662	8.3992	0.19193	0.0981	0.0240	58.1390
8	g	9	29	9	28	0.024073	1	8	29	9	99	73	1
			1.2242	0.05131	0.8352		0.78806	0.83524	1.2242	0.05131	0.6869	0.0376	0.78806
9	Apar Ind	0.68694	2	3	47	0.037607	5	7	2	3	4	07	5
		0.74689	1.1268	0.04560	0.8406		1.02066	0.84069	1.1268	0.04560	0.7468	0.0315	1.02066
10	KEC Intl	3	16	8	93	0.031579	4	3	16	8	93	79	4
		0.49921	1.3889	-	0.6774		-	0.67747	1.3889	-	0.4992	0.0291	-
11	Inox Wind	7	53	0.00568	76	0.029194	0.06323	6	53	0.00568	17	94	0.06323
	Elgi	0.27605	2.2160	0.12442	0.5877		33.4510	0.58773	2.2160	0.12442	0.2760	0.0107	33.4510
12	Equipments	8	37	1	34	0.010729	8	4	37	1	58	29	8
	V-Guard	0.31574	2.2462	0.14467	0.7045		14.9692	0.70451	2.2462	0.14467	0.3157	0.0457	14.9692
13	Ind	9	96	7	15	0.045729	7	5	96	7	49	29	7
	Schneider	0.69412	1.0369		0.6980		-	0.69809	1.0369		0.6941	0.1547	-
14	Infra	6	63	-0.0119	92	0.154771	0.17466	2	63	-0.0119	26	71	0.17466
	Action	0.42645	1.1594	0.06724	0.4940			0.49406	1.1594	0.06724	0.4264	0.0466	
15	Const	4	88	3	67	0.046672	3.87912	7	88	3	54	72	3.87912
		0.34873	2.3796	0.02118	0.8240		0.13967	0.82405	2.3796	0.02118	0.3487	0.1990	0.13967
16	BEML	1	51	3	56	0.199072	9	6	51	3	31	72	9
	Kirloskar	0.48353	1.2871		0.6145		0.72518	0.61459	1.2871		0.4835	0.0578	0.72518
17	Bros	2	91	0.03969	95	0.057844	1	5	91	0.03969	32	44	1
	Kirloskar	0.25437	2.2389	0.09097	0.5595		7.42815	0.55951	2.2389	0.09097	0.2543	0.0311	7.42815
18	Oil	1	72	4	12	0.031103	4	2	72	4	71	03	4
	Transforme	0.55847	1.4091	0.00994	0.7797		0.10262	0.77977	1.4091	0.00994	0.5584	0.0579	0.10262
19	rs	5	13	5	73	0.057923	2	3	13	5	75	23	2

Vol 5 Issue 2 (2025)

	Praj	0.41240	1.6876	0.06695	0.6799		102.107		1.6876	0.06695	0.4124	0.0157	102.107
20	Industries	6	57	7	2	0.015776	9	0.67992	57	7	06	76	9
		0.40440	1.4469	0.04135	0.5145		1.25254	0.51456	1.4469	0.04135	0.4044	0.0892	1.25254
21	Elecon Eng	3	77	3	63	0.089212	1	3	77	3	03	12	1
	Shakti	0.44704	1.5923	0.05866	0.7092		1.42955	0.70925	1.5923	0.05866	0.4470	0.0376	1.42955
22	Pumps	5	42	2	53	0.037679	1	3	42	2	45	79	1
	Ingersoll	0.23999	3.7523		0.7639		30.3938	0.76395	3.7523		0.2399	0.0078	30.3938
23	Rand	9	73	0.13849	53	0.007858	5	3	73	0.13849	99	58	5
	Tega	0.21755	2.3252	0.08548	0.4883		2.53585	0.48838	2.3252	0.08548	0.2175	0.0426	2.53585
24	Industries	2	79	4	84	0.042698	9	4	79	4	52	98	9
	Genus	0.36551	2.0532	0.05734	0.7344		1.46696	0.73443	2.0532	0.05734	0.3655	0.0391	1.46696
25	Power	9	99	5	34	0.039103	3	4	99	5	19	03	3
	RHI	0.28213	2.6524	0.20100	0.7318		83.8711	0.73180	2.6524	0.20100	0.2821	0.0126	83.8711
26	Magnesita	8	29	9	06	0.012615	7	6	29	9	38	15	7
	Engineers	0.47576	1.5993	0.10339	0.7089		65.0396	0.70898	1.5993	0.10339	0.4757	0.0040	65.0396
27	India	5	56	4	81	0.004075	6	1	56	4	65	75	6
	Graphite	0.19109	3.8075	0.17010	0.7081		97.6364	0.70810	3.8075	0.17010	0.1910	0.0258	97.6364
28	India	4	23	7	03	0.025892	1	3	23	7	94	92	1
	Lloyds	0.53099	2.4173	0.02471	0.9006			0.90065	2.4173	0.02471	0.5309	0.0342	
29	Engineer	6	38	5	54	0.034237	1.74049	4	38	5	96	37	1.74049
	Ion	0.58861	1.3317	0.08295	0.7721		3.02988	0.77212	1.3317	0.08295	0.5886	0.0388	3.02988
30	Exchange	9	14	6	29	0.038827	7	9	14	6	19	27	7
	ISGEC	0.59468	1.3693	0.05172	0.8127		0.92642	0.81277	1.3693	0.05172	0.5946	0.0709	0.92642
31	Heavy Eng	3	76	4	79	0.07093	9	9	76	4	83	3	9
		0.27481	2.0635	0.17488	0.5056		30.5904	0.50560	2.0635	0.17488	0.2748	0.0571	30.5904
32	HEG	8	31	2	03	0.057185	3	3	31	2	18	85	3
	Kirloskar	0.33182	2.1652	0.09017	0.7124		64.2189	0.71247	2.1652	0.09017	0.3318	0.0153	64.2189
33	Pneum	5	05	5	74	0.01536	1	4	05	5	25	6	1

Vol 5 Issue 2 (2025)

			3.7334	0.16751	0.2173		2.93965	0.21732	3.7334	0.16751	0.0629	0.0926	2.93965
34	NESCO	0.06294	55	4	24	0.092644	4	4	55	4	4	44	4
		0.39916	1.5289	0.10012	0.5932		6.32181	0.59327	1.5289	0.10012	0.3991	0.0108	6.32181
35	WPIL	2	21	5	76	0.010898	3	6	21	5	62	98	3
	Greaves	0.27167	1.9889	0.13406	0.5333		43.6615	0.53338	1.9889	0.13406	0.2716	0.0221	43.6615
36	Cotton	4	88	5	86	0.022124	7	6	88	5	74	24	7
	TD Power	0.33802	1.9175	0.03366	0.6445		17.0458	0.64451	1.9175	0.03366	0.3380	0.0171	17.0458
37	System	3	45	3	14	0.017121	7	4	45	3	23	21	7
	Shilchar	0.35149	2.0523	0.12918	0.6889		15.4106	0.68895	2.0523	0.12918	0.3514	0.0595	15.4106
38	Techno	3	82	3	52	0.05955	6	2	82	3	93	5	6
	GMM	0.31811	1.8345	0.13842	0.5828			0.58283	1.8345	0.13842	0.3181	0.0664	
39	Pfaudler	2	35	1	38	0.066441	23.4242	8	35	1	12	41	23.4242
	Dynamatic	0.30460	1.1878	0.02897	0.3560		0.10060	0.35602	1.1878	0.02897	0.3046	0.3094	0.10060
40	Tech	6	98	8	23	0.309463	6	3	98	8	06	63	6
		0.49633	1.3328	0.05673	0.6606		0.31546	0.66061	1.3328	0.05673	0.4963	0.1537	0.31546
41	Skipper	9	77	6	13	0.153797	7	3	77	6	39	97	7
	Pitti	0.51955	1.1429	0.03646	0.5923		0.18516	0.59233	1.1429	0.03646	0.5195	0.1696	0.18516
42	Engineeri	4	74	8	36	0.16965	8	6	74	8	54	5	8
	Bharat	0.37300	1.4744	0.02281	0.5309		1.62991	0.53096	1.4744	0.02281	0.3730	0.0140	1.62991
43	Bijlee	8	8	4	64	0.014098	4	4	8	4	08	98	4
	Servotech	0.48784	1.6381	0.05043	0.7731		0.37482	0.77319	1.6381	0.05043	0.4878	0.1250	0.37482
44	Renew	8	16	5	91	0.125028	6	1	16	5	48	28	6
	HPL		1.3572	0.01994	0.6827		0.26897	0.68274	1.3572	0.01994	0.5069	0.0483	0.26897
45	Electric &	0.50694	76	7	44	0.048372	7	4	76	7	4	72	7
	Rajoo	0.45582	1.5379	0.08029	0.6847		14.1570	0.68476	1.5379	0.08029	0.4558	0.0402	14.1570
46	Engineers	2	34	8	66	0.040204	8	6	34	8	22	04	8
	Shivalik	0.30646	2.1332	0.13291	0.5868		1.98398	0.58689	2.1332	0.13291	0.3064	0.0687	1.98398
47	Bimeta	7	15	7	95	0.068714	2	5	15	7	67	14	2

Journal of Informatics Education and Research ISSN: 1526-4726 Vol 5 Issue 2 (2025)

	Axiscades	0.37250	1.0035	0.03297	0.3135		3.54380		1.0035	0.03297	0.3725	0.1501	3.54380
48	Tech	5	41	9	3	0.150173	9	0.31353	41	9	05	73	9
	Raghav	0.27959	2.9529		0.5064		11.1163	0.50643	2.9529		0.2795	0.0777	11.1163
49	Product	6	26	0.14097	37	0.077732	2	7	26	0.14097	96	32	2
	Honda	0.21004	3.4579	0.12090	0.7213		165.444	0.72133	3.4579	0.12090	0.2100	0.0049	165.444
50	India PP	1	05	2	36	0.004928	5	6	05	2	41	28	5
			0.9706	0.03771	0.3075		0.43114	0.30753	0.9706	0.03771	0.3139	0.1881	0.43114
51	Windsor	0.31392	89	1	35	0.188139	5	5	89	1	2	39	5
		0.35310	2.4751	0.12810	0.8591		137.872		2.4751	0.12810	0.3531	0.0042	137.872
52	Disa India	1	6	6	3	0.004202	1	0.85913	6	6	01	02	1
	Salasar	0.52117	1.4672	0.07570	0.7626		1.04899		1.4672	0.07570	0.5211	0.0536	1.04899
53	Techno	6	14	8	5	0.053647	9	0.76265	14	8	76	47	9
	HLE	0.46987	1.3230	0.09164	0.6075		0.64653	0.60750	1.3230	0.09164	0.4698	0.1576	0.64653
54	Glascoat	3	18	2	03	0.157649	8	3	18	2	73	49	8
	Hind	0.48193	1.4385	0.01845	0.6887		0.01665	0.68876	1.4385	0.01845	0.4819	0.0799	0.01665
55	Rectifiers	8	43	6	66	0.07992	3	6	43	6	38	2	3
	Igarashi	0.30916	1.6118	0.10084	0.4855		2.18199	0.48551	1.6118	0.10084	0.3091	0.0765	2.18199
56	Motors	1	29	6	14	0.07659	5	4	29	6	61	9	5
	Kilburn	0.50211	1.3815	0.03551	0.6644		0.54894	0.66442	1.3815	0.03551	0.5021	0.1015	0.54894
57	Engg	4	58	9	26	0.101583	8	6	58	9	14	83	8
	MIC	0.73504	1.4452	-	0.4143		-		1.4452	-	0.7350	0.0715	-
58	Electronics	4	66	0.05158	6	0.071578	56.5535	0.41436	66	0.05158	44	78	56.5535
	John	0.54545	1.4418	0.01115	0.7722		0.71334	0.77229	1.4418	0.01115	0.5454	0.0457	0.71334
59	Cockerill	4	29	1	95	0.045736	9	5	29	1	54	36	9
		0.37644	1.8614	0.09245	0.6611		1.73754	0.66117	1.8614	0.09245	0.3764	0.0466	1.73754
60	Thejo Engg	3	37	4	79	0.046642	8	9	37	4	43	42	8
	Divgi		4.1655	0.24104	0.7321		212.807	0.73212	4.1655	0.24104		0.0147	212.807
61	Torqtrans	0.2223	1	9	27	0.014711	6	7	1	9	0.2223	11	6
	Ador	0.32307	1.9520	0.07915	0.6191		11.5688	0.61913	1.9520	0.07915	0.3230	0.0228	11.5688
62	Welding	9	8	3	37	0.022854	4	7	8	3	79	54	4

Vol 5 Issue 2 (2025)

	Roto	0.35318	1.6517	0.11138	0.5539		5.83099	0.55397	1.6517	0.11138	0.3531	0.0462	5.83099
63	Pumps	1	56	8	76	0.046212	8	6	56	8	81	12	8
	Everest	0.37404	1.9588	0.06105	0.5510			0.55106	1.9588	0.06105	0.3740	0.1651	
64	Kanto	9	99	7	62	0.165141	4.14457	2	99	7	49	41	4.14457
		0.44447	1.5283	0.06848	0.6613		0.74972	0.66131	1.5283	0.06848	0.4444	0.1414	0.74972
65	Bajaj Steel	1	99	4	18	0.141452	3	8	99	4	71	52	3
		0.27722	1.3986	0.11058	0.2023		3.12174	0.20239	1.3986	0.11058	0.2772	0.1590	3.12174
66	Elpro Int	1	26	3	97	0.159095	9	7	26	3	21	95	9
			1.0271	-	0.6055		0.14492	0.60550	1.0271	-	0.6715	0.1688	0.14492
67	TIL	0.67156	68	0.01382	01	0.168895	7	1	68	0.01382	6	95	7
	Kabra	0.32734	1.7383	0.07927	0.5625		8.22746	0.56252	1.7383	0.07927	0.3273	0.0251	8.22746
68	Extrusion	4	88	6	23	0.025156	8	3	88	6	44	56	8
	Walchandn	0.49868	1.1637	-	0.5777		-		1.1637	-	0.4986	0.1918	-
69	agar	8	22	0.03948	2	0.191836	0.17897	0.57772	22	0.03948	88	36	0.17897
	IFGL	0.25655	2.1642	0.07845	0.5042		5.84257	0.50422	2.1642	0.07845	0.2565	0.0394	5.84257
70	Refractory	2	96	3	23	0.039446	4	3	96	3	52	46	4
	Yuken	0.48211	1.3796	0.02336			0.34692		1.3796	0.02336	0.4821	0.0818	0.34692
71	India	1	7	9	0.6487	0.081814	7	0.6487	7	9	11	14	7
	Rishabh	0.16311	3.6918	0.05741	0.5698		4.38419	0.56982	3.6918	0.05741	0.1631	0.0292	4.38419
72	Instru	5	65	8	29	0.029268	6	9	65	8	15	68	6
	Kirl	0.67810	0.4366	-	0.2950				0.4366	_	0.6781	0.1597	
73	Electric	7	71	0.06308	6	0.15974	-0.2701	0.29506	71	0.06308	07	4	-0.2701
	RMC												
	Switchgear	0.44248	1.4235	0.02869	0.6285			0.62856	1.4235	0.02869	0.4424	0.2622	
74	s	1	31	2	64	0.262274	0.10358	4	31	2	81	74	0.10358
	Eimco	0.09362	5.1957	0.06074	0.4716		32.0393	0.47169	5.1957	0.06074	0.0936	0.0247	32.0393
75	Elecon	7	77	1	91	0.024784	2	1	77	1	27	84	2

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

								1		j			
	Permanent	0.43418	2.4347	0.14431	0.8528		2.88750		2.4347	0.14431	0.4341	0.0621	2.88750
76	Magne	2	72	7	3	0.062132	8	0.85283	72	7	82	32	8
, ,	8	0.39623	1.8594	0.10994	0.7180			0.71804	1.8594	0.10994	0.3962	0.0540	
77	Axtel Ind	1	12	1	45	0.054009	12.0468	5	12	1	31	09	12.0468
		0.16744	4.2895	0.11328	0.6788			0.67880	4.2895	0.11328	0.1674	0.0185	
78	Mazda	8	83	4	02	0.018527	20.4121	2	83	4	48	27	20.4121
	Focus	0.42934	2.0624	0.13979	0.7759		5.23388	0.77592	2.0624	0.13979	0.4293	0.0400	5.23388
79	Lighting	1	59	8	25	0.040037	6	5	59	8	41	37	6
	Hercules	0.06290	5.9414	0.03735	0.3011			0.30113	5.9414	0.03735	0.0629	0.0272	
80	Hoists	5	15	5	36	0.027263	20.1887	6	15	5	05	63	20.1887
	Affordable	0.60040	1.3570	0.04759	0.7685		0.50805	0.76851	1.3570	0.04759	0.6004	0.0870	0.50805
81	Robo	1	74	8	18	0.087076	3	8	74	8	01	76	3
	Lokesh	0.41509	1.2213	0.01539	0.5014		0.15173	0.50146	1.2213	0.01539	0.4150	0.1178	0.15173
82	Machines	6	04	1	66	0.117854	5	6	04	1	96	54	5
	ORIENT												
	CERATEC	0.28169	2.2673	0.05630	0.5912			0.59122	2.2673	0.05630	0.2816	0.0536	
83	Н	2	81	7	27	0.05368	1.86063	7	81	7	92	8	1.86063
	Triton	0.45903	1.1260	0.04190	0.5129		0.43994	0.51292	1.1260	0.04190	0.4590	0.0870	0.43994
84	Valves	8	04	1	27	0.087095	3	7	04	1	38	95	3
	Veljan	0.18541	4.0949				21.1027		4.0949		0.1854	0.0266	21.1027
85	Denison	3	99	0.10292	0.7171	0.026607	1	0.7171	99	0.10292	13	07	1
0.5	United	0.14975	6.3716	0.15322	0.5590		17.3858	0.55901	6.3716	0.15322	0.1497	0.0434	17.3858
86	Drilling	5	65	2	17	0.043497	5	7	65	2	55	97	5
0.5		0.10020	3.2944	0.10467	0.5953	0.041020	7.54582	0.59539	3.2944	0.10467	0.1902	0.0418	7.54582
87	Modison	0.19029	2	7	92	0.041829	2	2	2	7	9	29	2
	Intl	0.35048	1.1666		0.3931		1.87930	0.39316	1.1666 76		0.3504	0.0086	1.87930
88	Conveyor	2	76	0.03217	69	0.008613	4	9		0.03217		13	4

Journal of Informatics Education and Research ISSN: 1526-4726 Vol 5 Issue 2 (2025)

	Josts	0.56223	1.5282	0.04309	0.8473		2.15114	0.84738	1.5282	0.04309	0.5622	0.0471	2.15114
89	Engineers	1	21	2	88	0.047171	6	8	21	2	31	71	6
	Forbes	0.52280	0.8698	0.07984	0.4355		1.04553	0.43553	0.8698	0.07984	0.5228	0.1421	1.04553
90	Gokak	5	78	4	33	0.142109	3	3	78	4	05	09	3
	Emkay	0.09656	2.8501	0.17429	0.2667		159.449	0.26671	2.8501	0.17429	0.0965	0.0154	159.449
91	Taps	6	12	1	15	0.015413	2	5	12	1	66	13	2
	Pradeep	0.47417	1.1945	0.07975	0.5582		0.71243	0.55826	1.1945	0.07975	0.4741	0.1155	0.71243
92	Metals	3	92	8	69	0.115513	2	9	92	8	73	13	2
		1.03314	0.7577	-	0.6804		-	0.68043	0.7577	-	1.0331	0.1273	-
93	TRF	6	14	0.08352	36	0.127366	0.72887	6	14	0.08352	46	66	0.72887
	Majestic	0.05678	2.4742	0.00247	0.1379		0.12821	0.13797	2.4742	0.00247	0.0567	0.1729	0.12821
94	Auto	2	78	6	75	0.17292	3	5	78	6	82	2	3
	Innovators	0.38974	2.0136	0.03289	0.7515		0.24148	0.75150	2.0136	0.03289	0.3897	0.1312	0.24148
95	Faca	5	16	6	07	0.13127	1	7	16	6	45	7	1
	Gujarat	0.12585	8.1225	0.01644	0.6597		3.68090	0.65977	8.1225	0.01644	0.1258	0.0102	3.68090
96	Apollo	9	85	7	74	0.010283	1	4	85	7	59	83	1
		0.31119	0.7654	-	0.2337		-	0.23370	0.7654	-	0.3111	0.2209	-
97	Batliboi	4	98	0.03452	04	0.220913	0.20934	4	98	0.03452	94	13	0.20934
	Mahindra	0.30753	2.5427	0.03814	0.7624		9.25966	0.76249	2.5427	0.03814	0.3075	0.0056	9.25966
98	EPC	7	78	4	92	0.005684	5	2	78	4	37	84	5
	Birla	0.41121	1.8906	0.01906	0.7679		0.68786	0.76796	1.8906	0.01906	0.4112	0.0253	0.68786
99	Precision	9	63	2	67	0.02532	5	7	63	2	19	2	5
10	Bemco		1.1614	0.02799	0.5151			0.51518	1.1614	0.02799	0.4548	0.1112	
0	Hydraulic	0.45481	55	3	85	0.111269	0.84277	5	55	3	1	69	0.84277
10	-	0.36252	1.3703	0.03622	0.4934		0.75909	0.49342	1.3703	0.03622	0.3625	0.0479	0.75909
1	GEE	3	77	2	26	0.047972	4	6	77	2	23	72	4
10	Patels	0.49205	1.7104	0.06563	0.8156		0.83591	0.81562	1.7104	0.06563	0.4920	0.0682	0.83591
2	Airtemp	7	72	5	27	0.068273	7	7	72	5	57	73	7

Vol 5 Issue 2 (2025)

10	Taylormade	0.37199	4.4643	0.02163	0.8962		1.65927		4.4643	0.02163	0.3719	0.0734	1.65927
3	Rene	5	71	8	4	0.073432	9	0.89624	71	8	95	32	9
10	Brady and	0.45574	1.7371	0.04437	0.7296		1.73921	0.72966	1.7371	0.04437	0.4557	0.0310	1.73921
4	Morri	1	17	2	62	0.031008	2	2	17	2	41	08	2
10	KPT	0.49730	1.3591	0.01833	0.6655		0.13227	0.66551	1.3591	0.01833	0.4973	0.1693	0.13227
5	Industries	6	41	2	13	0.169322	2	3	41	2	06	22	2
10	Dhruv	0.40543	2.2030	0.09871	0.8564		1.09081	0.85640	2.2030	0.09871	0.4054	0.1080	1.09081
6	Consultan	2	17	3	01	0.108039	6	1	17	3	32	39	6
10	Loyal	0.41553	1.6868	0.08916	0.6934		1.75493	0.69345	1.6868	0.08916	0.4155	0.0775	1.75493
7	Equip	9	25	3	52	0.077504	1	2	25	3	39	04	1
10		0.23088	6.6898	0.11352	0.6042		14.5218	0.60424	6.6898	0.11352	0.2308	0.0096	14.5218
8	Alphageo	5	08	7	49	0.00968	9	9	08	7	85	8	9
10	Lakshmi	0.19417	2.4006	0.06156	0.4611		324.276	0.46117	2.4006	0.06156	0.1941	0.0221	324.276
9	Elec	3	41	7	72	0.022139	1	2	41	7	73	39	1
	GTV												
11	Engineerin	0.41685	1.4194	0.02228	0.5806		0.96589	0.58062	1.4194	0.02228	0.4168	0.0578	0.96589
0	g	7	08	3	29	0.057839	3	9	08	3	57	39	3
11	Veto	0.24602	2.9675	0.09568	0.6197				2.9675	0.09568	0.2460	0.0289	
1	Switch	2	26	9	9	0.028957	2.95214	0.61979	26	9	22	57	2.95214
11	Nitiraj	0.12714	4.1591	0.06769	0.4512		23.1891	0.45127	4.1591	0.06769	0.1271	0.0125	23.1891
2	Enginee	5	58	6	73	0.012524	6	3	58	6	45	24	6
11	Star Delta	0.14963	8.6208	0.07462	0.8721		4.19614	0.87213	8.6208	0.07462	0.1496	0.0408	4.19614
3	Tran	3	98	8	31	0.040838	8	1	98	8	33	38	8
11	RTS Power		2.0609	0.02364	0.5258		0.48549	0.52586	2.0609	0.02364	0.3096	0.1101	0.48549
4	Corp	0.30964	76	3	62	0.110189	2	2	76	3	4	89	2

Vol 5 Issue 2 (2025)

11		0.35576	1.5376	0.08697	0.5229		3.67389	0.52295	1.5376	0.08697	0.3557	0.0835	3.67389
5	Cenlub	9	37	7	57	0.083543	6	7	37	7	69	43	6
11		0.61154	1.1488	0.01452	0.6308		1.37684	0.63081	1.1488	0.01452	0.6115	0.0967	1.37684
6	Paramone	8	46	1	19	0.096747	8	9	46	1	48	47	8
11	Alliance	0.85512	0.3048		0.1635		-	0.16351	0.3048		0.8551	0.1779	-
7	Integ	3	05	-0.086	18	0.17791	0.40185	8	05	-0.086	23	1	0.40185
11	D & H		1.5705		0.6651		0.16856	0.66513	1.5705		0.4246	0.0937	0.16856
8	India	0.42464	13	0.01578	37	0.093749	8	7	13	0.01578	4	49	8
11	ATV	0.10028	2.7639	0.01232	0.1925		0.03574	0.19255	2.7639	0.01232	0.1002	0.4729	0.03574
9	Projects	6	01	8	57	0.472971	7	7	01	8	86	71	7
12		1.00141	0.8597	_	0.7677		-	0.76771	0.8597	_	1.0014	0.5016	-
0	Jyoti	3	74	0.03851	18	0.501611	0.05997	8	74	0.03851	13	11	0.05997
12	Precision	0.40563	1.7126	_	0.6844		-	0.68443	1.7126	_	0.4056	0.1828	-
1	Elec	1	31	0.02559	35	0.182888	0.12431	5	31	0.02559	31	88	0.12431
12		0.09482	12.389	0.19587	0.8139		293.818	0.81396	12.389	0.19587	0.0948	0.0075	293.818
2	DHP	3	6	8	65	0.007583	4	5	6	8	23	83	4
12		0.12036	4.1053	0.09444	0.4641		35.0374	0.46412	4.1053	0.09444	0.1203	0.0121	35.0374
3	Rishiroop	3	01	9	29	0.012148	1	9	01	9	63	48	1
12	Storage	0.65068	1.1125	0.06013	0.7217		0.94109	0.72172	1.1125	0.06013	0.6506	0.1281	0.94109
4	Technol	3	15	5	29	0.128132	7	9	15	5	83	32	7
12	Refractory	0.65379	1.0375	_	0.6731		-	0.67317	1.0375	_	0.6537	0.2047	-
5	Shap	8	55	0.01818	71	0.204755	0.05118	1	55	0.01818	98	55	0.05118
12	Shilp	0.16975	2.9689	0.09084	0.4251		3.77132	0.42519	2.9689	0.09084	0.1697	0.0841	3.77132
6	Gravures	1	75	1	99	0.084176	7	9	75	1	51	76	7
12	Calcom	0.46036	1.2956	0.02291	0.5877		0.16568	0.58776	1.2956	0.02291	0.4603	0.6819	0.16568
7	Vision	2	03	5	62	0.681961	9	2	03	5	62	61	9
12	Alfred	0.01677	64.404	0.01932	0.2940			0.29401	64.404	0.01932	0.0167	0.0262	
8	Herbert	9	95	9	13	0.026284	5.57731	3	95	9	79	84	5.57731

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

12	United Van	0.23026	2.9864		0.2244		_	0.22446	2.9864		0.2302	0.3317	_
9	Hors	8	54	-0.0508	62	0.331737	2.46978	2	54	-0.0508	68	37	2.46978
13	Rungta	0.26039	2.7045	0.02050	0.6920		0.45198	0.69202	2.7045	0.02050	0.2603	0.0624	0.45198
0	Irrig	3	13	9	26	0.062496	9	6	13	9	93	96	9
13	Duncan	0.39259	1.7863	0.00810	0.5712		0.00510	0.57121	1.7863	0.00810	0.3925	0.0165	0.00510
1	Eng	3	3	1	15	0.016533	7	5	3	1	93	33	7
13	Rexnord	0.26506	2.4313	0.09827	0.5799		1.47960	0.57995	2.4313	0.09827	0.2650	0.0755	1.47960
2	Electro	6	6	1	59	0.075536	3	9	6	1	66	36	3
13		0.68912	5.6752	1.18950	0.4171		0.24199	0.41717	5.6752	1.18950	0.6891	6.0881	0.24199
3	Dynavision	1	49	3	74	6.088174	7	4	49	3	21	74	7
13	Akar Auto	0.63849	1.1277	0.02100	0.7166		0.13351	0.71661	1.1277	0.02100	0.6384	0.1614	0.13351
4	Indus	5	82	6	14	0.161443	9	4	82	6	95	43	9
13	ITL	0.45093	1.7054	0.06883	0.7641		1.68721	0.76419	1.7054	0.06883	0.4509	0.0446	1.68721
5	Industries	3	16	6	96	0.044606	1	6	16	6	33	06	1
13		0.45076	0.9040	-	0.3975			0.39756	0.9040	-	0.4507	0.1705	
6	Rishi Laser	3	03	0.03002	62	0.170503	-0.094	2	03	0.03002	63	03	-0.094
13	Rolcon	0.43256	1.6583	0.03504	0.7018			0.70180	1.6583	0.03504	0.4325	0.0120	-
7	Engg	7	45	9	05	0.012048	2.85855	5	45	9	67	48	2.85855
13		0.45324	0.9682	-	0.3851		-	0.38518	0.9682	-	0.4532	0.1391	-
8	Delta	7	73	0.04802	86	0.13914	0.44345	6	73	0.04802	47	4	0.44345
13	TandI	0.54200	1.3989	0.08504	0.6965		51.0738	0.69650	1.3989	0.08504	0.5420	0.0005	51.0738
9	Global	4	23	8	08	0.000531	1	8	23	8	04	31	1
14		1.04453	0.5644	-	0.5747		-	0.57478	0.5644	-	1.0445	0.1210	-
0	Aplab	4	32	0.06101	84	0.121066	0.41047	4	32	0.06101	34	66	0.41047
14	Sharika	0.45767	1.6359	0.03279	0.7356			0.73567	1.6359	0.03279	0.4576	0.0898	
1	Enter	6	11	8	71	0.08989	0.36686	1	11	8	76	9	0.36686
14	Rasi	0.20538	4.2374	0.05396	0.7828		3.80940	0.78287	4.2374	0.05396	0.2053	0.0195	3.80940
2	Electrodes	5	85	7	71	0.019517	3	1	85	7	85	17	3

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

14	Alfa	0.36388	1.1937	_	0.4319		-	0.43191	1.1937	_	0.3638	0.1088	_
3	Transforme	3	83	0.06499	18	0.108883	1.52536	8	83	0.06499	83	83	1.52536
14	SEMAC		1.7166	0.05426	0.4900		4.41848	0.49000	1.7166	0.05426	0.3231	0.0091	4.41848
4	CONSULT	0.32312	09	9	03	0.009169	5	3	09	9	2	69	5
14		0.44198	1.8757	0.01853	0.7454		0.05463	0.74540	1.8757	0.01853	0.4419	0.3797	0.05463
5	Cranex	8	02	6	06	0.379754	8	6	02	6	88	54	8
14	Tarapur	0.83238	1.0524	=	0.7234		-	0.72344	1.0524	=	0.8323	0.0024	-
6	Trans	6	13	0.17571	44	0.002474	316.294	4	13	0.17571	86	74	316.294
14	Manugraph	0.25307	1.8279	-	0.4474		-	0.44747	1.8279	-	0.2530	0.0752	-
7	Ind	4	62	0.04792	71	0.075247	5.00745	1	62	0.04792	74	47	5.00745
14		3.55376	0.5101	-	0.2939			0.29398	0.5101	-	3.5537	15.989	
8	TIHIL	8	74	0.58173	84	15.98953	-0.1749	4	74	0.58173	68	53	-0.1749
14	Advance	0.26981	2.3120	-	0.4298		-	0.42984	2.3120	-	0.2698	0.0553	-
9	Meter	4	08	0.03569	42	0.055315	0.48824	2	08	0.03569	14	15	0.48824
15		0.36137	1.5931	0.02256	0.5554		0.34882	0.55540	1.5931	0.02256	0.3613	0.0968	0.34882
0	Artefact	3	95	2	06	0.096827	8	6	95	2	73	27	8
15	Rapicut	0.26133	3.2896	0.04832	0.8242		1.11009	0.82422	3.2896	0.04832	0.2613	0.0335	1.11009
1	Carbide	3	09	1	29	0.033554	9	9	09	1	33	54	9
15	Solitaire	0.24070	2.6437	0.08789	0.5949		31.7621	0.59491	2.6437	0.08789	0.2407	0.0449	31.7621
2	Mach	3	56	6	19	0.044996	6	9	56	6	03	96	6
15	Hawa	0.48072	1.6857	0.02768	0.8087		0.16108	0.80873	1.6857	0.02768	0.4807	0.1803	0.16108
3	Engineers	6	44	1	38	0.180315	1	8	44	1	26	15	1
15	Polymechpl	0.50081	1.1292	0.05940	0.5626		2.83014	0.56267	1.1292	0.05940	0.5008	0.0171	2.83014
4	ast	9	9	1	76	0.017198	1	6	9	1	19	98	1
15	Adarsh	0.52576	1.7610	-	0.8388		-	0.83882	1.7610	-	0.5257	0.2925	-
5	Plant	3	47	0.03031	21	0.292556	0.03638	1	47	0.03031	63	56	0.03638
15		0.14754	3.3786	0.00532	0.4888		-	0.48888	3.3786	0.00532	0.1475	0.0669	-
6	Tarini Int	4	31	9	83	0.06695	0.11566	3	31	9	44	5	0.11566

ISSN: 1526-4726 Vol 5 Issue 2 (2025)

15		1.42775	0.4396	-	0.2563			(0.25631	0.4396	-	1.4277	0.1135		
7	Premier	6	49	0.18535	11	0.113591	-1.0481		1	49	0.18535	56	91	-1.0481	